81. 证明 $\sqrt{x+1}-\sqrt{x}=\frac{1}{2\sqrt{x+\theta(x)}}$
Posted by haifeng on 2015-01-11 19:36:08 last update 2015-01-11 19:36:08 | Answers (2) | 收藏
设 $x\geqslant 0$, 证明
\[
\sqrt{x+1}-\sqrt{x}=\frac{1}{2\sqrt{x+\theta(x)}},
\]
其中 $\theta(x)$ 满足不等式 $\frac{1}{4}\leqslant\theta(x) < \frac{1}{2}$.