Answer

问题及解答

证明下面的极限

Posted by haifeng on 2016-08-18 21:48:41 last update 2016-08-18 22:56:15 | Edit | Answers (2)

证明

\[
\lim_{n\rightarrow+\infty}\int_0^1\cdots\int_0^1\frac{n}{x_1+x_2+\cdots+x_n}dx_1 dx_2\cdots dx_n=2.
\]

 


 

[分析]

$n=1$ 时, 

\[
\int_0^1 \frac{1}{x_1}dx_1=\ln x\biggr|_{0}^{1}=+\infty.
\]

$n=2$ 时,

\[
\begin{split}
\int_0^1\int_0^1\frac{2}{x_1+x_2}dx_1 dx_2&=\int_0^1 \int_0^1\frac{2}{t+x}dt dx\\
&=\int_0^1\biggl[2\ln(t+x)\biggr|_{t=0}^{t=1}\biggr]dx\\
&=2\int_0^1[\ln(1+x)-\ln x]dx\\
&=2\int_0^1\ln(1+\frac{1}{x})dx\\
&=2\biggl[x\ln(1+\frac{1}{x})\biggr|_0^1-\int_0^1 xd\ln(1+\frac{1}{x})\biggr]\\
&=2\biggl[\ln 2-\int_0^1 x\cdot\frac{1}{1+\frac{1}{x}}\cdot\frac{-1}{x^2}dx\biggr]\\
&=2\biggl[\ln 2+\int_0^1\frac{1}{x+1}dx\biggr]\\
&=4\ln 2.
\end{split}
\]

1

Posted by haifeng on 2016-08-18 23:19:20

记 $t_{n-k}=x_1+\cdots+x_{n-k}$, $k=1,2,\ldots,n-1$. 于是

\[
\begin{split}
\int_0^1 \frac{n}{x_1+x_2+\cdots+x_n}dx_n &=\int_0^1 \frac{n}{t_{n-1}+x_n}dx_n\\
&=n\ln(t_{n-1}+x_n)\biggr|_{x_n=0}^{x_n=1}\\
&=n\ln(1+\frac{1}{t_{n-1}}).
\end{split}
\]

然后考虑积分

\[
\int_0^1 n\ln(1+\frac{1}{t_{n-1}})dx_{n-1}
\]

不过这个思路进行不下去, 因为太繁琐.

2

Posted by haifeng on 2016-08-19 00:46:21

令 $t_{n-k}=x_1+x_2+\cdots+x_{n-k}$, $k=0,1,2,\ldots,n-1$.

并记 

\[
\varphi_n=\int_0^1\cdots\int_0^1\frac{n}{x_1+x_2+\cdots+x_n}dx_1 dx_2\cdots dx_n
\]

我们证明 $\varphi_n$ 关于 $n$ 是递减的. 即有

\[
\varphi_{n-1}=\int_0^1\cdots\int_0^1\frac{n-1}{t_{n-1}}dx_1 dx_2\cdots dx_{n-1} > \int_0^1\cdots\int_0^1\frac{n}{t_n}dx_1 dx_2\cdots dx_n=\varphi_n.
\]

事实上有

\[
\begin{split}
\frac{n-1}{t_{n-1}} & > \int_0^1 \frac{n}{t_n}dx_n\\
&=n\ln t_n\biggr|_{t_{n-1}}^{t_{n-1}+1}\\
&=n\ln(1+\frac{1}{t_{n-1}})
\end{split}
\]

等价于

\[
\frac{n-1}{n} > t_{n-1}\ln(1+\frac{1}{t_{n-1}})
\]

注意到 $t_{n-1}=x_1+x_2+\cdots+x_{n-1}\leqslant n-1$. 而 $(1+\frac{1}{x})^x$ 关于 $x$ 是严格递增的. 因此

\[
t_{n-1}\ln(1+\frac{1}{t_{n-1}})\leqslant(n-1)\ln(1+\frac{1}{n-1}).
\]

我们只要证明 $\ln(1+\frac{1}{n-1}) < \frac{1}{n}$ 即可, 此不等式即 $\ln n-\ln(n-1) < \frac{1}{n}$. 容易证明

\[
\frac{1}{n} < \ln n-\ln(n-1) < \frac{1}{n-1}.
\]

因此, 得换个思路. 假设 $t_{n-1}=n-1-\varepsilon$, 是否有

\[
(n-1-\varepsilon)\ln(1+\frac{1}{n-1-\varepsilon}) < \frac{n-1}{n}.
\]

这等价于

\[
\begin{split}
&(n-1)\ln(1+\frac{1}{n-1-\varepsilon})-\varepsilon\ln(1+\frac{1}{n-1-\varepsilon})<(n-1)\cdot\frac{1}{n}\\
\Leftrightarrow &(n-1)\biggl[\ln(1+\frac{1}{n-1-\varepsilon})-\frac{1}{n}\biggr] < \varepsilon\cdot\ln(1+\frac{1}{n-1-\varepsilon})
\end{split}
\]

注意到

\[
\ln(1+\frac{1}{n-1-\varepsilon})-\frac{1}{n}=\ln(n-\varepsilon)-\ln(n-1-\varepsilon)-\frac{1}{n} > \frac{1}{n-\varepsilon}-\frac{1}{n} > 0.
\]

 

因此, 我们证明了 $\varphi_n$ 关于 $n$ 是严格递减的.