Questions in category: 初等数论 (Elementary Number Theory)
数论 >> 一般数论 >> 初等数论
<[8] [9] [10] [11] [12] [13] [14] [15] [16] [17] >

111. 对任意素数 $p\neq 2,5$, 存在 $n$, 使得 $10^n\equiv 1(\mod p)$.

Posted by haifeng on 2015-06-28 16:36:10 last update 2016-01-11 16:16:06 | Answers (0) | 收藏


对任意素数 $p\neq 2,5$, 存在 $n$, 使得 $10^n\equiv 1(\mod p)$.


更一般的,

对于与 $m$ 互素的任何数 $a$, 存在 $n$, 使得 $a^n\equiv 1(\mod m)$.


Hint: 即 Euler 定理, $n=\phi(m)$.

112. 如果 $x, x+36, x+112$ 都是素数, 则 $2(x+112)+53=2x+277$ 一定是 3 的倍数.

Posted by haifeng on 2015-06-02 09:35:26 last update 2015-06-02 09:35:26 | Answers (1) | 收藏


如果 $x, x+36, x+112$ 都是素数, 则 $2(x+112)+53=2x+277$ 一定是 3 的倍数.

113. 证明下面的数可以被 13 整除.

Posted by haifeng on 2015-05-30 21:36:52 last update 2015-05-30 22:14:24 | Answers (0) | 收藏


证明:

\[
13\underbrace{88\cdots 8}_{6k}91\equiv 0(\mod 13),\quad\forall\ k=0,1,2,\ldots
\]

\[
13\underbrace{88\cdots 8}_{72k}91\equiv 0(\mod 169),
\]

即第一个能被169整除的是 1388888888888888888888888888888888888888888888888888888888888888888888888891, 其中含有72个8.

以上将所有8改成任何数字都一样. 这是因为 xxxxxx00 始终能被 13 整除.

1388888888888888888888888888888888888888888888888888888888888888888888888891 = 13 * 13 * 7696738667 * 6838252872218262661 * 156145294634054688436224492369146997125414197


 

一些计算(使用的是 ARIBAS 软件)

==> 1388888891 mod 13.
-: 0

==> 1388888891 mod 169.
-: 78

==> 1388888888888891 mod 13.
-: 0

==> 1388888888888891 mod 169.
-: 117

==> 1388888888888888888891 mod 13.
-: 0

==> 1388888888888888888891 mod 169.
-: 156

==> 1388888888888888888888888891 mod 13.
-: 0

==> 1388888888888888888888888891 mod 169.
-: 26

==> 1388888888888888888888888888888891 mod 13.
-: 0

==> 1388888888888888888888888888888891 mod 169.
-: 65

==> 1388888888888888888888888888888888888891 mod 13.
-: 0

==> 1388888888888888888888888888888888888891 mod 169.
-: 104

==> 1388888888888888888888888888888888888888888891 mod 13.
-: 0

==> 1388888888888888888888888888888888888888888891 mod 169.
-: 143

==> 1388888888888888888888888888888888888888888888888891 mod 13.
-: 0

==> 1388888888888888888888888888888888888888888888888891 mod 169.
-: 13

==> 1388888888888888888888888888888888888888888888888888888891 mod 13.
-: 0

==> 1388888888888888888888888888888888888888888888888888888891 mod 169.
-: 52

==> 1388888888888888888888888888888888888888888888888888888888888891 mod 13.
-: 0

==> 1388888888888888888888888888888888888888888888888888888888888891 mod 169.
-: 91

==> 1388888888888888888888888888888888888888888888888888888888888888888891 mod 13.
-: 0

==> 1388888888888888888888888888888888888888888888888888888888888888888891 mod 169.
-: 130

==> 1388888888888888888888888888888888888888888888888888888888888888888888888891 mod 13.
-: 0

==> 1388888888888888888888888888888888888888888888888888888888888888888888888891 mod 169.
-: 0

==>

114. 形如 $10^k+157$ 的素数

Posted by haifeng on 2015-05-24 09:05:22 last update 2015-05-24 09:05:22 | Answers (0) | 收藏


形如 $10^k+157$ 的素数有

\[
10^{23}+157,\quad 10^{54}+157,\quad 10^{55}+157,
\]

115. $\text{digitRoot}(N)=\text{digitRoot}((N\cdot k)$ for any $k$ with $\text{digitSum}((k)=10$.

Posted by haifeng on 2015-05-20 08:55:00 last update 2015-05-23 09:35:40 | Answers (1) | 收藏


\[\text{dgr}(N)=\text{dgr}((N\cdot k)\]

对任意满足 $\text{dgs}(k)=10$ 的 $k$ 都成立.


这里我们简写 $\text{dgs}=\text{digitSum}$,  $\text{dgr}=\text{digitRoot}$.

 $\text{digitSum}(N)$ 是指数 $N$ 在十进制表示下的各位数字之和. 而 $\text{digitRoot}(N)$ 是对 $N$ 不断求数字之和最后得到的一个一位数.

参见问题1542

116. 证明 $\text{dgr}(m+n)=\text{dgr}(\text{dgr}(m)+\text{dgr}(n))$.

Posted by haifeng on 2015-05-09 16:46:24 last update 2016-10-27 10:58:02 | Answers (1) | 收藏


设 $m,n$ 是两个正整数, 证明

\[
\begin{aligned}
\text{dgr}(m+n)&=\text{dgr}(\text{dgr}(m)+\text{dgr}(n)),\\
\text{dgr}(m\cdot n)&=\text{dgr}(\text{dgr}(m)\cdot\text{dgr}(n)),\\
\end{aligned}
\]

其中 $\text{dgr}(n)$ 是指数字 $n$ 的 digital root.

 

作为推论,

\[
\text{dgr}(n^k)=\text{dgr}\bigl(\text{dgr}^k(n)\bigr),\quad k\in\mathbb{Z}^{+}.
\]


Reference: http://en.wikipedia.org/wiki/Digital_root


The digital root of a sum is always equal to the digital root of the sum of the summands' digital roots

117. 证明 $10^k\equiv -2(\text{mod} 6)$

Posted by haifeng on 2015-05-09 14:28:32 last update 2015-05-09 14:28:32 | Answers (0) | 收藏


证明 $10^k\equiv -2(\text{mod} 6)$.

118. 证明: $Ae+B\pi=C$ 不可能有整数解.

Posted by haifeng on 2015-04-25 15:16:26 last update 2015-04-25 15:16:26 | Answers (0) | 收藏


 证明: $Ae+B\pi=C$ 不可能有整数解.

这里 $e$ 和 $\pi$ 是熟知的两个超越数, $A,B,C$ 是整数.

119. [Thm](Zeckendorf)正整数的泽肯多夫表示

Posted by haifeng on 2014-11-27 11:18:56 last update 2014-11-27 11:18:56 | Answers (0) | 收藏


正整数的泽肯多夫表示

是指任意一个正整数都可以唯一地表示为一个或多个 Fibonacci 数的和, 如果是多个, 则这些 Fibonacci 数要求是不相邻的.

 

http://en.wikipedia.org/wiki/Zeckendorf%27s_theorem

http://www.encyclopediaofmath.org/index.php/Zeckendorf_representation

120. [陈景润]存在无穷多个素数 $p$, 使得 $p+2$ 是不超过两个素数的乘积.

Posted by haifeng on 2014-07-28 10:11:59 last update 2015-04-23 10:30:18 | Answers (0) | 收藏


1966年, 陈景润得到下面与孪生素数相关的一个结果.

存在无穷多个素数 $p$, 使得 $p+2$ 是不超过两个素数之积.

 

陈景润于1966年用加权筛法证明了

定理. 任何一个充分大的偶数, 都可以表示为一个素数与一个不超过两个素数乘积的和.

 

这是对哥德巴赫猜想 (A) 最好的结果.

 

哥德巴赫猜想:

(A) 每一个不小于 6 的偶数, 皆可表示为两个奇素数之和.

(B) 每一个不小于 9 的奇数, 皆可表示为三个奇素数之和.

由于 $2n+1=2(n-1)+3$, 故 (A) 可推出 (B).

 

维诺格拉道夫已证明了: 充分大的奇数, 皆可表为三个奇素数之和, 即基本解决了 (B).

<[8] [9] [10] [11] [12] [13] [14] [15] [16] [17] >