161. 素数的筛法
Posted by haifeng on 2011-06-16 17:24:26 last update 0000-00-00 00:00:00 | Answers (0) | 收藏
Posted by haifeng on 2011-06-16 17:24:26 last update 0000-00-00 00:00:00 | Answers (0) | 收藏
Posted by haifeng on 2011-06-16 16:15:19 last update 2020-05-15 10:45:49 | Answers (0) | 收藏
设 $x>0$, $\pi(x)$ 指不超过 $x$ 的所有素数的个数. 若记 $p_i$ 为第 $i$ 个素数, 则 $\pi(x)=\max\{i|p_i\leq x\}$.
黎曼假设(Riemann Hypothesis)等价于
\[
\pi(x)=\text{Li}(x)+O(\sqrt{x}\ln x)
\]
其中
\[
\mathrm{Li}(x):=\int_{2}^{x}\frac{1}{\ln t}dt=\text{li}(x)-\text{li}(2).
\]
\[
\mathrm{Li}(x)\sim\frac{x}{\ln x}\sum_{k=0}^{\infty}\frac{k!}{(\ln x)^k}=\frac{x}{\ln x}+\frac{x}{(\ln x)^2}+\frac{2!\cdot x}{(\ln x)^3}+\frac{3!\cdot x}{(\ln x)^4}+\frac{4!\cdot x}{(\ln x)^5}+\cdots
\]
$\pi(x)$ 与 $\mathrm{Li}(x)$ 之间差值的估计也可以表述为
\[
\pi(x)=\sum_{p\leqslant x}1=\int_{2}^{x}\frac{1}{\ln t}dt+O(xe^{-c\sqrt{\ln x}})
\]
Posted by haifeng on 2011-06-16 15:53:16 last update 0000-00-00 00:00:00 | Answers (1) | 收藏
Posted by haifeng on 2011-06-16 14:58:41 last update 2016-08-30 17:19:53 | Answers (0) | 收藏
特别的, 当 $p_i > 3$, 根据 Bertrand 假设(见问题661), $(p_{i},2p_i-2)$ 之间至少存在一个素数, 因此 $p_{i+1} < 2p_i$.
也就是说, 满足 $p_{n+1}=2p_n-1$ 的只有两个例子:
\[
2\times 2-1= 3 =p_2,\quad 2\times 3-1= 5 =p_3.
\]
Posted by haifeng on 2011-06-16 14:51:54 last update 0000-00-00 00:00:00 | Answers (0) | 收藏
G.H.Hardy and E.M.Wright, An Introduction to the Theory of Numbers. Oxford Science Publications, 5th edition (1979). pp.343-344.
Posted by haifeng on 2011-06-16 13:00:53 last update 0000-00-00 00:00:00 | Answers (0) | 收藏
Posted by haifeng on 2011-06-16 12:53:22 last update 0000-00-00 00:00:00 | Answers (0) | 收藏
4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4 2 4 14 4 6 2 10 2 6 6 4 2 4 6 2 10 2 4 2 12 10 2 4 2 4 6 2 6 4 6 6 6 2 6 4 2 6 4 6 8 4 2 4 6 8 6 10 2 4 6 2 6 6 4 2 4 6 2 6 4 2 6 10 2 10 2 4 2 4 6 8 4 2 4 12 2 6 4 2 6 4 6 12 2 4 2 4 8 6 4 6 2 4 6 2 6 10 2 4 6 2 6 4 2 4 2 10 2 10 2 4 6 6 2 6 6 4 6 6 2 6 4 2 6 4 6 8 4 2 6 4 8 6 4 6 2 4 6 8 6 4 2 10 2 6 4 2 4 2 10 2 10 2 4 2 4 8 6 4 2 4 6 6 2 6 4 8 4 6 8 4 2 4 2 4 8 6 4 6 6 6 2 6 6 4 2 4 6 2 6 4 2 4 2 10 2 10 2 6 4 6 2 6 4 2 4 6 6 8 4 2 6 10 8 4 2 4 2 4 8 10 6 2 4 8 6 6 4 2 4 6 2 6 4 6 2 10 2 10 2 4 2 4 6 2 6 4 2 4 6 6 2 6 6 6 4 6 8 4 2 4 2 4 8 6 4 8 4 6 2 6 6 4 2 4 6 8 4 2 4 2 10 2 10 2 4 2 4 6 2 10 2 4 6 8 6 4 2 6 4 6 8 4 6 2 4 8 6 4 6 2 4 6 2 6 6 4 6 6 2 6 6 4 2 10 2 10 2 4 2 4 6 2 6 4 2 10 6 2 6 4 2 6 4 6 8 4 2 4 2 12 6 4 6 2 4 6 2 12 4 2 4 8 6 4 2 4 2 10 2 10 6 2 4 6 2 6 4 2 4 6 6 2 6 4 2 10 6 8 6 4 2 4 8 6 4 6 2 4 6 2 6 6 6 4 6 2 6 4 2 4 2 10 12 2 4 2 10 2 6 4 2 4 6 6 2 10 2 6 4 14 4 2 4 2 4 8 6 4 6 2 4 6 2 6 6 4 2 4 6 2 6 4 2 4 12 2 12
Posted by haifeng on 2011-06-16 12:48:19 last update 0000-00-00 00:00:00 | Answers (0) | 收藏
2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4 2 4 8 6 4 6 2 4 6 2 6 6 4 2 4 6 2 6 4 2 4 2 10 2 10
Posted by haifeng on 2011-06-16 12:44:36 last update 0000-00-00 00:00:00 | Answers (0) | 收藏
7,11,13,17,19,23,29,31,37,41,43,47,49,53,59,61,67,71,73,77,79,83,89,91,97,101
4 2 4 2 4 6 2 6 | 4 2 4 2 4 6 2 6 | 4 2 4 2 4 6 2 6 | 4 ...
Posted by haifeng on 2011-06-16 12:38:14 last update 0000-00-00 00:00:00 | Answers (0) | 收藏