Questions in category: 定积分 (Definite Integral)
分析 >> 数学分析 >> 定积分 [82]
<[1] [2] [3] [4] [5] [6] [7] [8] [9] >

81. 求 $I_n=\int_0^{\frac{\pi}{2}}\sin^n xdx$ 与 $I_n=\int_0^{\frac{\pi}{2}}\cos^n xdx$

Posted by haifeng on 2011-05-22 20:03:20 last update 2014-12-29 11:43:11 | Answers (1) | 收藏


\[ I_n=\begin{cases} \frac{(2k-1)!!}{(2k)!!}\cdot\frac{\pi}{2},&\text{if}\ n=2k;\\ \frac{(2k)!!}{(2k+1)!!},&\text{if}\ n=2k+1.\\ \end{cases} \]


类似的, 求

\[
I_n=\int_0^{\pi}x\cos^n xdx,\quad I_n=\int_0^{\pi}x\sin^n xdx.
\]

82. 求 $\int_{0}^{1}\frac{-\ln t}{1-t}dt$.

Posted by haifeng on 2011-05-04 22:42:00 last update 2013-06-25 18:54:03 | Answers (0) | 收藏


这个积分等于 $\zeta(2)$, 即 $\frac{\pi^2}{6}$.

详见 $\zeta(2)$ 探讨

<[1] [2] [3] [4] [5] [6] [7] [8] [9] >