Answer

问题及解答

求 $I_n=\int_0^{\frac{\pi}{2}}\sin^n xdx$ 与 $I_n=\int_0^{\frac{\pi}{2}}\cos^n xdx$

Posted by haifeng on 2011-05-22 20:03:20 last update 2014-12-29 11:43:11 | Edit | Answers (1)

\[ I_n=\begin{cases} \frac{(2k-1)!!}{(2k)!!}\cdot\frac{\pi}{2},&\text{if}\ n=2k;\\ \frac{(2k)!!}{(2k+1)!!},&\text{if}\ n=2k+1.\\ \end{cases} \]


类似的, 求

\[
I_n=\int_0^{\pi}x\cos^n xdx,\quad I_n=\int_0^{\pi}x\sin^n xdx.
\]

1

Posted by haifeng on 2014-12-29 18:42:24

\[
I_n=\int_0^{\pi}x\cos^n xdx,
\]

解:

\[
\begin{split}
I_n&=\int_0^{\pi}x\cos^n xdx\\
&=\int_0^{\pi}x\cos^{n-1}xd\sin x\\
&=x\cos^{n-1}x\sin x\biggr|_{0}^{\pi}-\int_0^{\pi}\sin xd(x\cos^{n-1}x)\\
&=0-\int_0^{\pi}\sin x\biggl(\cos^{n-1}x+x(n-1)\cos^{n-2}x\cdot(-1)\sin x\biggr)dx\\
&=-\int_0^{\pi}\sin x\cos^{n-1}xdx+(n-1)\int_0^{\pi}x\cos^{n-2}x\sin^2 xdx\\
&=\int_0^{\pi}\cos^{n-1}xd\cos x+(n-1)\int_0^{\pi}x\cos^{n-2}x(1-\cos^2 x)dx
\end{split}
\]