问题

分析 >> 数学分析 >> 导数及微分
Questions in category: 导数及微分 (Derivatives and differentials).

设函数 $f(x)$ 定义在 $(0,+\infty)$ 上, 对任意 $x_1,x_2\in(0,+\infty)$, 有 $f(x_1\cdot x_2)=f(x_1)+f(x_2)$, 且 $f'(1)=1$, 证明: $f(x)=\ln x$.

Posted by haifeng on 2022-10-13 20:49:00 last update 2022-10-13 20:49:00 | Answers (1) | 收藏


设函数 $f(x)$ 定义在 $(0,+\infty)$ 上, 对任意 $x_1,x_2\in(0,+\infty)$, 有 $f(x_1\cdot x_2)=f(x_1)+f(x_2)$, 且 $f'(1)=1$, 证明: $f(x)=\ln x$.

 

这个问题类似于 问题2634.