设函数 $f(x)$ 定义在 $(0,+\infty)$ 上, 对任意 $x_1,x_2\in(0,+\infty)$, 有 $f(x_1\cdot x_2)=f(x_1)+f(x_2)$, 且 $f'(1)=1$, 证明: $f(x)=\ln x$.
设函数 $f(x)$ 定义在 $(0,+\infty)$ 上, 对任意 $x_1,x_2\in(0,+\infty)$, 有 $f(x_1\cdot x_2)=f(x_1)+f(x_2)$, 且 $f'(1)=1$, 证明: $f(x)=\ln x$.
这个问题类似于 问题2634.