设 $f(x)$ 在 $[a,+\infty)$ 上可微, 且 $\lim\limits_{x\rightarrow+\infty}(f(x)+f'(x))=\ell$, 证明: $\lim\limits_{x\rightarrow+\infty}f(x)=\ell$.
设 $f(x)$ 在 $[a,+\infty)$ 上可微, 且 $\lim\limits_{x\rightarrow+\infty}(f(x)+f'(x))=\ell$, 证明: $\lim\limits_{x\rightarrow+\infty}f(x)=\ell$.