若 $a,b,c$ 是不全相等的实数, 且 $a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}=k$, 证明: $abc+k=0$.
若 $a,b,c$ 是不全相等的实数, 且 $a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}=k$, 证明: $abc+k=0$.
Remark: 题目由 David Chen 提供.
类似问题: 3073
Question: 能否推广到 $n$ 个数? 即下面的命题是否成立?
命题: 设 $a_1,a_2,\ldots,a_n$ 是 $n$ 个不全相等的实数, 这里$n\geqslant 3$, 且满足关系式
\[
a_1+\frac{1}{a_2}=a_2+\frac{1}{a_3}=a_3+\frac{1}{a_4}=\cdots=a_{n-1}+\frac{1}{a_n}=a_n+\frac{1}{a_1}=k,
\]
则
\[
k+\prod_{i=1}^{n}a_i=0.
\]