问题

分析 >> 数学分析 >> 微分中值定理
Questions in category: 微分中值定理 (Differential mean value theorem).

设 $f\in C[a,b]$, 且在 $(a,b)$ 上可导. 若 $f'(x)\neq 0$, $\forall x\in(a,b)$. 则存在 $\xi,\eta\in(a,b)$, 使得 $f'(\xi)=\frac{a+b}{2\eta}f'(\eta)$.

Posted by haifeng on 2014-10-22 20:11:17 last update 2014-10-22 20:19:39 | Answers (1) | 收藏


设 $f\in C[a,b]$, 且在 $(a,b)$ 上可导. 若 $f'(x)\neq 0$, $\forall x\in(a,b)$. 则存在 $\xi,\eta\in(a,b)$, 使得

\[f'(\xi)=\frac{a+b}{2\eta}f'(\eta).\]


类似的问题还可以这样设置

使得

\[
\frac{f'(\xi)}{f'(\eta)}=\frac{e^b-e^a}{b-a}e^{-\eta}.
\]


一般看到这种形式的等式, 就应该想到使用 Cauchy 中值定理.