11. Gagliardo–Nirenberg–Sobolev inequality
Posted by haifeng on 2011-06-02 18:02:44 last update 0000-00-00 00:00:00 | Answers (0) | 收藏
Posted by haifeng on 2011-06-02 18:02:44 last update 0000-00-00 00:00:00 | Answers (0) | 收藏
Posted by haifeng on 2011-05-31 17:55:48 last update 0000-00-00 00:00:00 | Answers (1) | 收藏
Posted by haifeng on 2011-05-27 17:49:27 last update 2021-03-24 16:53:22 | Answers (0) | 收藏
简称 KP 方程
\[ u_{tx}+\alpha(u_x^2+uu_{xx})+\gamma u_{xxxx}+\varepsilon u_{yy}=0, \] 其中 $\alpha,\gamma,\varepsilon$ 均为自由参数. KP 方程可看作 KdV 方程在高维情形的推广, 它用于描述水波的运动.
KP 方程虽然来自于应用数学, 但随后被证实它与代数几何、表示论及谱理论有关.
"非等谱特征参数的方程可能更具现实意义, 更接近现实模型"
"应用 Hirota 方程和 Wronskian 技巧, 可以解决非等谱 KP 方程"
Posted by haifeng on 2011-05-27 17:43:55 last update 0000-00-00 00:00:00 | Answers (0) | 收藏
Posted by haifeng on 2011-05-27 17:41:37 last update 0000-00-00 00:00:00 | Answers (0) | 收藏
Posted by haifeng on 2011-05-27 17:36:39 last update 0000-00-00 00:00:00 | Answers (0) | 收藏
Posted by haifeng on 2011-05-27 17:34:06 last update 0000-00-00 00:00:00 | Answers (0) | 收藏
Posted by haifeng on 2011-05-27 17:22:00 last update 0000-00-00 00:00:00 | Answers (1) | 收藏