1. 关于 2025 的矩阵
Posted by haifeng on 2025-01-01 12:35:07 last update 2025-01-01 14:25:53 | Answers (0) | 收藏
A=\begin{pmatrix}
2&0&2&5\\
0&2&5&2\\
2&5&2&0\\
5&2&0&2
\end{pmatrix}
\]
\det(\sqrt{3}A)=2025.
\]
\det(\sqrt{2\cdot 0-2+5}A)=2025.
\]
Posted by haifeng on 2025-01-01 12:35:07 last update 2025-01-01 14:25:53 | Answers (0) | 收藏
Posted by haifeng on 2024-12-20 14:15:40 last update 2024-12-20 14:15:40 | Answers (2) | 收藏
设 $A=\begin{pmatrix}-2 & -2 & 6\\ -1 & -1 & 3\\ -1 & -1 & 3\end{pmatrix}$, $C(A)=\{B\in\mathbb{C}^{3\times 3}\mid AB=BA\}$.
(1) 求 $A$ 的若当标准形.
(2) 求复线性空间 $C(A)$ 的维数.
Posted by haifeng on 2023-08-19 22:21:04 last update 2023-08-19 22:23:36 | Answers (1) | 收藏
(1)
\[
A=\begin{pmatrix}
1 & 3 & 6\\
1 & 2 & 3\\
1 & 4 & 9
\end{pmatrix}
\]
(2)
\[
B=\begin{pmatrix}
1 & 2 & 1 & 0\\
2 & 1 & 4 & 3\\
3 & 3 & 5 & 3\\
7 & 5 & 13 & 9
\end{pmatrix}
\]
(3)
\[
C=\begin{pmatrix}
1 & 1 & 2 & 2 & 1\\
0 & 2 & 1 & 5 & -1\\
2 & 0 & 3 & -1 & 3\\
1 & 1 & 0 & 4 & -1\\
\end{pmatrix}
\]
(4)
\[
D=\begin{pmatrix}
1 & 3 & 2 & 0\\
7 & 0 & 14 & 3\\
2 & -1 & 0 & 1\\
5 & 1 & 6 & 2\\
2 & -1 & 4 & 1
\end{pmatrix}
\]
题目参见 [1] pp.78
[1] 陈建华 主编 《线性代数》 机械工业出版社.
Posted by haifeng on 2023-08-18 19:34:31 last update 2023-08-18 19:34:31 | Answers (1) | 收藏
设 $A\in\mathbb{R}^{m\times n}$,
\[
A=\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n}\\
a_{21} & a_{22} & \cdots & a_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
a_{m1} & a_{m2} & \cdots & a_{mn}\\
\end{pmatrix}
\]
写出求 $\mathrm{rank}(A)$ 的具体步骤.
Posted by haifeng on 2023-08-11 17:54:37 last update 2023-08-11 17:56:10 | Answers (2) | 收藏
设 $A$ 是 $n$ 阶幂等矩阵, 即满足 $A^2=A$. 证明:
Posted by haifeng on 2023-08-10 22:40:49 last update 2023-08-11 09:05:17 | Answers (0) | 收藏
(1)
\[
\begin{pmatrix}
1 & 3 \\
2 & 4
\end{pmatrix}
\]
(2)
\[
\begin{pmatrix}
1 & 0 & 1\\
2 & 1 & 0\\
-3 & 2 & -5
\end{pmatrix}
\]
(3)
\[
\begin{pmatrix}
1 & 0 & 0\\
2 & 4 & 3\\
5 & 2 & -1
\end{pmatrix}
\]
解答见 https://www.bilibili.com/video/BV11u4y1R7iJ/
题目来自[1] pp.76 Exer 2-6
[1] 陈建华 主编 《线性代数》
Posted by haifeng on 2023-08-04 11:35:53 last update 2023-08-04 12:42:55 | Answers (1) | 收藏
(1)
\[
\begin{pmatrix}
a & b & c\\
c & b & a\\
1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & a & c\\
1 & b & b\\
1 & c & a
\end{pmatrix}
\]
题目见 [1] P.132
[1] 李炯生, 查建国 编著 《线性代数》
Posted by haifeng on 2022-09-19 13:51:54 last update 2022-09-19 13:51:54 | Answers (0) | 收藏
梅兹内矩阵(Metzler Matrix)
Posted by haifeng on 2022-02-02 08:27:55 last update 2022-02-02 09:29:19 | Answers (1) | 收藏
$GL_3(\mathbb{F}_3)$ 中有多少个矩阵?
即由数字 0,1,2 组成的 $3\times 3$ 矩阵中, 可逆的有多少个?
若令 $X_3=\{A\in F^{3\times 3}\mid \det(A)=0\}$, 这里 $F=\mathbb{F}_3$. 问 $X$ 中含有多少个元素?
References:
https://www.zhihu.com/question/508137995
Posted by haifeng on 2021-09-06 08:04:18 last update 2021-09-06 08:04:18 | Answers (0) | 收藏
设 $A,B$ 为半正定(positive semidefinite)矩阵, 根据 Jensen 不等式, 有
\[
\Bigl[\mathrm{tr}(A^s+B^s)\Bigr]^{\frac{1}{s}}\leqslant \Bigl[\mathrm{tr}(A^r+B^r)\Bigr]^{\frac{1}{r}},\quad\forall\ s > r > 0.
\]