问题

分析 >> 数学分析
Questions in category: 数学分析 (Mathematical Analysis).

证明: $x\neq 2k\pi$ 时, $\sum\limits_{k=1}^{n}\sin kx=\dfrac{\cos\frac{1}{2}x-\cos\frac{2n+1}{2}x}{2\sin\frac{x}{2}}$.

Posted by haifeng on 2024-12-13 18:34:18 last update 2024-12-13 19:49:16 | Answers (1) | 收藏


证明: $x\neq 2k\pi$ 时,

\[
\sum\limits_{k=1}^{n}\sin kx=\sin x+\sin 2x+\cdots+\sin nx=\dfrac{\cos\frac{1}{2}x-\cos\frac{2n+1}{2}x}{2\sin\frac{x}{2}}
\]