Answer

问题及解答

证明: $x\neq 2k\pi$ 时, $\sum\limits_{k=1}^{n}\sin kx=\dfrac{\cos\frac{1}{2}x-\cos\frac{2n+1}{2}x}{2\sin\frac{x}{2}}$.

Posted by haifeng on 2024-12-13 18:34:18 last update 2024-12-13 19:49:16 | Edit | Answers (1)

证明: $x\neq 2k\pi$ 时,

\[
\sum\limits_{k=1}^{n}\sin kx=\sin x+\sin 2x+\cdots+\sin nx=\dfrac{\cos\frac{1}{2}x-\cos\frac{2n+1}{2}x}{2\sin\frac{x}{2}}
\]

1

Posted by haifeng on 2024-12-13 19:42:10

利用公式

\[
2\sin\frac{x}{2}\sin kx=\cos(k-\frac{1}{2})x-\cos(k+\frac{1}{2})x,
\]

\[
\begin{split}
2\sin\frac{x}{2}\sum_{k=1}^{n}\sin kx&=\sum_{k=1}^{n}\Big[\cos(k-\frac{1}{2})x-\cos(k+\frac{1}{2})x\Bigr]\\
&=\Bigl(\cos\frac{1}{2}x-\cos\frac{3}{2}x\Bigr)+\Bigl(\cos\frac{3}{2}x-\cos\frac{5}{2}x\Bigr)+\cdots+\Bigl(\cos\frac{2n-1}{2}x-\cos\frac{2n+1}{2}x\Bigr)\\
&=\cos\frac{1}{2}x-\cos\frac{2n+1}{2}x\ .
\end{split}
\]