问题

分析 >> 数学分析 >> 极限
Questions in category: 极限 (Limit).

设 $\lim\limits_{n\rightarrow\infty}a_n=A$, $\lim\limits_{n\rightarrow\infty}b_n=B$, 则 $\lim_{n\rightarrow\infty}\frac{1}{n}(a_1 b_n+a_2b_{n-1}+\cdots+a_n b_1)=AB$.

Posted by haifeng on 2014-05-14 22:48:09 last update 2014-05-14 22:48:09 | Answers (0) | 收藏


设 $\lim\limits_{n\rightarrow\infty}a_n=A$, $\lim\limits_{n\rightarrow\infty}b_n=B$, 则
\[
\lim_{n\rightarrow\infty}\frac{1}{n}(a_1 b_n+a_2b_{n-1}+\cdots+a_n b_1)=AB.
\]