Questions in category: 解析几何 (Cartesian geometry)
几何 >> 解析几何 [44]
<[1] [2] [3] [4] [5] >

41. 心脏线(cardioid)关于初始点为圆心的圆的反演方程

Posted by haifeng on 2014-06-10 10:42:03 last update 2015-08-23 23:07:57 | Answers (1) | 收藏


平面 $\mathbb{R}^2$ 上两个半径为 $r$ 的圆 $C_1$ 和 $C_2$ 外切于 $P$ 点. 将圆 $C_2$ 沿 $C_1$ 的圆周(无滑动)滚动一周, 这时, $C_2$ 上的 $P$ 点也随 $C_2$ 的运动而运动. 记 $\Gamma$ 为 $P$ 点的运动轨迹曲线, 称为心脏线(cardioid).

现设 $C$ 为以 $P$ 的初始位置(切点)为圆心的圆, 其半径为 $R$. 记

\[
\gamma:\ \mathbb{R}^2\cup\{\infty\}\rightarrow\mathbb{R}^2\cup\{\infty\}
\]

为圆 $C$ 的反演变换, 它将 $Q\in\mathbb{R}^2\setminus\{P\}$ 映为射线 $PQ$ 上的点 $Q'$, 满足 $|PQ|\cdot|PQ'|=R^2$.

求证: $\gamma(\Gamma)$ 为抛物线.


Hint: 心脏线(cardioid)的方程是 $\rho=a(1-\cos\theta)$

这里, 心脏线的方程为 $\rho=2r(1-\cos\theta)$, 而反演是不改变角度的, 因此反演后的曲线, 方程是

\[
\rho_2=\frac{R^2}{\rho}=\frac{R^2}{2r(1-\cos\theta)}.
\]

 

回忆圆锥曲线的极坐标方程是

\[
\rho=\frac{ep}{1-e\cos\theta},
\]

其中 $e$ 是离心率(当 $e\in(0,1)$ 时, 曲线是椭圆; 当 $e=1$ 时曲线是抛物线; 当 $e>1$ 时曲线是双曲线.)

$p$ 是焦准距, 即焦点到准线的距离. (注意, 这里椭圆的左焦点设定为极点, 双曲线的右焦点设定为极点.)

 


 

注: 此为第五届中国大学生数学竞赛预赛试题(数学类, 2013年10月).

42. 直线截抛物线所围成有界区域的面积的最小值问题

Posted by haifeng on 2014-06-09 11:37:29 last update 2014-06-09 11:38:20 | Answers (1) | 收藏


设 $\Gamma$ 为抛物线, $P$ 是与焦点位于抛物线同侧的一点, 过 $P$ 的直线 $L$ 与 $\Gamma$ 围成的有界区域的面积记为 $A(L)$.

证明: $A(L)$ 取最小值当且仅当 $P$ 恰为 $L$ 被 $\Gamma$ 所截出的线段的中点.

43. 设 $\Gamma$ 为椭圆抛物面 $z=3x^2+4y^2+1$, 从原点作 $\Gamma$ 的所有切平面, 求形成的切锥面方程.

Posted by haifeng on 2014-06-09 11:12:08 last update 2015-08-31 10:16:51 | Answers (2) | 收藏


设 $\Gamma$ 为椭圆抛物面 $z=3x^2+4y^2+1$, 从原点作 $\Gamma$ 的所有切平面, 求形成的切锥面方程.

44. 已知三条平行直线, 求过这三条平行直线的平面或圆柱面方程.

Posted by haifeng on 2014-06-08 15:07:53 last update 2014-06-08 15:07:53 | Answers (2) | 收藏


设这三条直线是

$L_1:\ x=y=z$

$L_2:\ x-1=y=z+1$

$L_3:\ x=y+1=z-1$

求过这三条平行直线的圆柱面方程.

<[1] [2] [3] [4] [5] >