关于 2025 的矩阵
>> A=[2,0,2,5;0,2,5,2;2,5,2,0;5,2,0,2]
input> [2,0,2,5;0,2,5,2;2,5,2,0;5,2,0,2]
--------------------
2 0 2 5
0 2 5 2
2 5 2 0
5 2 0 2
--------------------
>> det(A)
225
因此, 若令
\[
A=\begin{pmatrix}
2&0&2&5\\
0&2&5&2\\
2&5&2&0\\
5&2&0&2
\end{pmatrix}
\]
A=\begin{pmatrix}
2&0&2&5\\
0&2&5&2\\
2&5&2&0\\
5&2&0&2
\end{pmatrix}
\]
则
\[
\det(\sqrt{3}A)=2025.
\]
\det(\sqrt{3}A)=2025.
\]
或
\[
\det(\sqrt{2\cdot 0-2+5}A)=2025.
\]
\det(\sqrt{2\cdot 0-2+5}A)=2025.
\]
>> A=[2 2 5 0;
A=[2 2 5 0;
5 0 2 2;
0 5 2 2;
2 2 0 5]
A=[2 2 5 0;
input> [2,2,5,0;5,0,2,2;0,5,2,2;2,2,0,5]
--------------------
2 2 5 0
5 0 2 2
0 5 2 2
2 2 0 5
--------------------
>> det(A)
225
>>
>> C=[2 2 5;
C=[2 2 5;
2 5 2;
5 2 2]
C=[2 2 5;
input> [2,2,5;2,5,2;5,2,2]
--------------------
2 2 5
2 5 2
5 2 2
--------------------
>> det(C)
-81