基解矩阵
设 $\Phi(t)$, $\Psi(t)$ 是方程组 $X'(t)=A(t)X(t)$ 的任意两个基解矩阵. 这里 $t\in[a,b]$. $X(t)$ 是一 $n\times n$ 矩阵, $A(t)$ 也是一 $n$ 阶方阵.
所谓基解矩阵是指: $\Phi(t)$ 满足此方程, 且 $\det\Phi(t)\neq 0$, $\forall\ t\in[a,b]$.
证明: 存在非奇异常数矩阵 $C$, 使得 $\Phi(t)\equiv\Psi(t)\cdot C$, $\forall\ t\in[a,b]$.