[Exer10-1] Exercise 11 of Book {Devore2017B} P.157
The cdf of checkout duration $X$ as described in Exercise 1 (见 Exer9-1) is
\[
F(x)=\begin{cases}
0, & x < 0, \\
\frac{x^2}{4}, & 0\leqslant x < 2,\\
1, & 2\leqslant x.
\end{cases}
\]
Use this to compute the following:
- (a) $P(X\leqslant 1)$;
- (b) $P(.5\leqslant X\leqslant 1.5)$ and $P(.5\leqslant X\leqslant 1)$.
- (c) $P(X > .5)$;
- (d) The median checkout duration $\tilde{\mu}$ [solve $.5=F(\tilde{\mu})$];
- (e) $F'(x)$ to obtain the density function $f(x)$.