在三维欧氏空间中给定 $n$ 个点 $A_1,\ldots,A_n$, 给定 $n$ 个实数 $\lambda_1,\ldots,\lambda_n$, 适合 $\sum_{i=1}^{n}\lambda_i\neq 0$.
在三维欧氏空间中给定 $n$ 个点 $A_1,\ldots,A_n$, 给定 $n$ 个实数 $\lambda_1,\ldots,\lambda_n$, 适合 $\sum_{i=1}^{n}\lambda_i\neq 0$.
试证: 对任意点 $Q$, 在此空间中唯一存在与 $Q$ 无关的点 $P$, 使得
\[
\sum_{i=1}^{n}\lambda_i\overrightarrow{QA_i}=(\sum_{i=1}^{n}\lambda_i)\overrightarrow{QP}.
\]
Hint.
令 $\mu_i=\frac{\lambda_i}{\sum\limits_{i=1}^{n}\lambda_i}$, 则 $\sum\limits_{i=1}^{n}\mu_i=1$. 问题等价于找到点 $P$, 使得
\[
\sum_{i=1}^{n}\mu_i\overrightarrow{QA_i}=\overrightarrow{QP}.
\]
注: 此为第五届全国大学生数学夏令营(1991年7月)第一试试题