首先, 通过变换 $t=\frac{\pi}{2}-x$, 可证
\[\int_0^{\frac{\pi}{2}}e^{\sin x}\mathrm{d}x=\int_0^{\frac{\pi}{2}}e^{\cos x}\mathrm{d}x.\]
因此, 若设 $f(x)=e^{\sin x}-e^{\cos x}$, 则有 $\int_0^{\frac{\pi}{2}}f(x)\mathrm{d}x=0$.
$I_1-I_2=\int_0^{\frac{\pi}{2}}x^{\alpha}f(x)\mathrm{d}x$.
令 $\varphi(x)=\int_0^x f(t)\mathrm{d}t$, 则 $\varphi'(x)=f(x)$.
\[
\begin{split}
\int_{0}^{\frac{\pi}{2}}x^{\alpha}f(x)\mathrm{d}x&=\int_{0}^{\frac{\pi}{2}}x^{\alpha}\varphi'(x)\mathrm{d}x\\
&=\int_{0}^{\frac{\pi}{2}}x^{\alpha}\mathrm{d}\varphi(x)\\
&=x^{\alpha}\varphi(x)\biggr|_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}}\varphi(x)\mathrm{d}x^{\alpha}\\
&=-\int_{0}^{\frac{\pi}{2}}\varphi(x)\alpha x^{\alpha-1}\mathrm{d}x.\qquad(*)
\end{split}
\]
注意到
\[\varphi(x)=\int_0^x f(t)\mathrm{d}t=\int_0^x(e^{\sin t}-e^{\cos t})\mathrm{d}t,\]
$\varphi(0)=0$,
\[
\varphi'(x)=f(x)=e^{\sin x}-e^{\cos x}
\begin{cases}
< 0, & x\in[0,\frac{\pi}{4}),\\
= 0, & x=\frac{\pi}{4},\\
> 0, & x\in(\frac{\pi}{4},\frac{\pi}{2}].
\end{cases}
\]
因此, $\varphi(x) < 0$, $\forall\ x\in(0,\frac{\pi}{2})$. 于是 (*) 式中右端大于 0.
即 $I_1-I_2 > 0$, 也就是 $I_1 > I_2$.