按类别列出问题

Mathematics


几何 >> 初等几何
Questions in category: 初等几何 (Elementary Geometry).

1

[Langley's problem] Triangle 20 80 80

Posted by haifeng on 2018-03-23 14:27:21 last update 2018-03-24 00:36:00 | Answers (2) | 收藏

Langley 问题是一道比较有名的初等几何题目, 有很多证明方法或求解方法. (https://www.cut-the-knot.org/triangle/80-80-20/IndexToClassical.shtml 上给出了12种方法.)

其中最巧妙也是最简洁的,  是由下面PDF文件给出的证明. 只需添加两条辅助线即可完成证明.

http://www.arbelos.co.uk/Papers/Triangle-problem.pdf

 


问题:

在三角形 $ABC$ 中, $\angle A=20^{\circ}$, $AB=AC$. 点 $D$ 位于边 $AC$ 上使得 $\angle DBC=60^{\circ}$ 并且点 $E$ 位于边 $AB$ 上, 使得 $\angle ECB=50^{\circ}$.

求 $\angle BDE$ 的大小.

 

 

这里给出上面pdf文件中的截图

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Remark:

类似的证明方法, 都会在其中找到一个正三角形.

 

References:

https://www.cut-the-knot.org/triangle/80-80-20/index.shtml

 

2

证明图中两块阴影部分的面积相等, 即 $A=B$.

Posted by haifeng on 2018-03-11 16:57:15 last update 2018-03-23 14:24:24 | Answers (1) | 收藏

证明图中两块阴影部分的面积相等, 即 $A=B$.

 

 

翼とレンズ  翻译: 飞翼与透镜   wings and lens

 

翼(つばさ)

 

 

The picture is provided by Lei LIU.

La photo est fournie par Lei LIU.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

直角三角形中由两条平行于某一直角边的直线(这三条直线的间隔相等)构成了两个梯形, 它们的面积决定了另一个三角形的面积.

Posted by haifeng on 2017-10-19 16:28:08 last update 2017-10-20 20:29:13 | Answers (1) | 收藏

直角三角形 $\triangle ABC$ 中 $\angle B$ 是直角, DE, FH 均平行于 AB, (D、F在线段 AC 上, 且 $D\neq A,C$.  E、H 在线段 BC 上)。 H 是线段 BE 的中点.

假设梯形 ABHF 的面积为 $S_1$, 梯形 FHED 的面积为 $S_2$, 求三角形 DEC 的面积 $S_3$.

 

qid2021.png
 


Search

New posted more ...