首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 聆听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

几何 >> 微分几何 >> 曲线曲面论
Questions in category: 曲线曲面论 (Curve and surface theory).

证明: 质点在中心力场下的运动轨迹是平面曲线.

Posted by haifeng on 2012-06-25 11:12:30 last update 2012-07-26 09:22:01 | Answers (0)


中心力对中心的力矩(moment)为零 $\vec{r}\times\vec{F}=0$, 从而角动量(angular momentum) $\vec{J}=m\vec{r}\times\vec{v}$ 守恒, 因为

\[
\begin{split}
\frac{d\vec{J}}{dt}&=m\dot{\vec{r}}\times\vec{v}+m\vec{r}\times\dot{\vec{v}}\\
&=m\vec{v}\times\vec{v}+m\vec{r}\times\vec{F}\\
&=0.
\end{split}
\]

角动量守恒即推出粒子的轨迹一定在与 $\vec{J}$ 垂直的某个平面内.

比如, 重力是中心保守力(central conservative force), 其能量(energy)和角动量(angular momentum)都是守恒的, 因此粒子在重力场下的轨迹也被限制于某个平面内.

设粒子的轨迹可被曲线 $\vec{\gamma}:I\rightarrow\mathbb{R}^3$ 所描述. 则运动方程是

\[
\frac{d^2\vec{\gamma}}{dt^2}=F(r)\vec{e}_r
\]

这里约定对于曲线 $\vec{\gamma}$ 有时简记为 $\gamma$. 求解此方程.


References:

Frank C. van den Bosch (天文学家)

http://www.astro.yale.edu/vdbosch/lecture3.pdf