求 $\sin(\frac{k}{5}\pi)$ 的值, 这里 $k\in\mathbb{Z}$.
求 $\sin(\frac{k}{5}\pi)$ 的值, 这里 $k\in\mathbb{Z}$.
利用三倍角公式, 可以求出
\[
\cos(36^{\circ})=\cos(\frac{1}{5}\pi)=\frac{1+\sqrt{5}}{4},
\]
\[
\sin(36^{\circ})=\sin(\frac{1}{5}\pi)=\frac{1}{2}\sqrt{\frac{5-\sqrt{5}}{2}}.
\]
从而
\[
\sin(72^{\circ})=\sin(\frac{2}{5}\pi)=2\sin(\frac{1}{5}\pi)\cos(\frac{1}{5}\pi)=2\cdot\frac{1}{2}\sqrt{\frac{5-\sqrt{5}}{2}}\cdot\frac{1+\sqrt{5}}{4}=\frac{1}{2}\sqrt{\frac{5+\sqrt{5}}{2}}.
\]
$\sin(108^{\circ})=\sin(\frac{3}{5}\pi)=\sin(\pi-\frac{3}{5}\pi)=\sin(\frac{2}{5}\pi)$. 当然, 也可以利用三倍角公式计算:
\[
\cos(72^{\circ})=\cos(\frac{2\pi}{5})=2\cos^2(\frac{\pi}{5})-1=2\cdot\Bigl(\frac{1+\sqrt{5}}{4}\Bigr)^2-1=\frac{\sqrt{5}-1}{4}.
\]