设 $a_k\in\mathbb{R}$, $k=1,2,\ldots,n$. 证明: $\biggl|\sum\limits_{k=1}^{n}a_k\biggr|\geqslant |a_1|-\sum\limits_{k=2}^{n}|a_k|$.
设 $a_k\in\mathbb{R}$, $k=1,2,\ldots,n$. 证明:
\[\biggl|\sum_{k=1}^{n}a_k\biggr|\geqslant |a_1|-\sum_{k=2}^{n}|a_k|.\]
设 $a_k\in\mathbb{R}$, $k=1,2,\ldots,n$. 证明:
\[\biggl|\sum_{k=1}^{n}a_k\biggr|\geqslant |a_1|-\sum_{k=2}^{n}|a_k|.\]
1
Pf.
\[
\begin{split}
|a_1|&=|(a_1+a_2+\cdots+a_n)-(a_2+\cdots+a_n)|\\
&\leqslant |a_1+a_2+\cdots+a_n|+|a_2+\cdots+a_n|\\
&\leqslant |a_1+a_2+\cdots+a_n|+|a_2|+\cdots+|a_n|\\
&=\biggl|\sum_{k=1}^{n}a_k\biggr|+\sum_{k=2}^{n}|a_k|,\\
\end{split}
\]
因此
\[
\biggl|\sum_{k=1}^{n}a_k\biggr|\geqslant |a_1|-\sum_{k=2}^{n}|a_k|.
\]
注: 这里用到了不等式 $|a-b|\leqslant |a|+|b|$.