观察被积函数 $xf(\sin x)$, 使用分部积分并不可行. 但注意到 $\sin x$ 在 $[0,\pi]$ 之间有性质 $\sin(\pi-x)=\sin x$, 可以考虑换元.
(1)
Pf. 令 $t=\pi-x$, 则 $x=\pi-t$, $\mathrm{d}x=-\mathrm{d}t$, 且 $\sin x=\sin(\pi-t)=\sin t$. 于是
\[
\begin{split}
\int_{0}^{\pi}x f(\sin x)\mathrm{d}x&=\int_{\pi}^{0}(\pi-t)f(\sin t)\cdot (-1)\mathrm{d}t=\int_{0}^{\pi}(\pi-t)f(\sin t)\mathrm{d}t\\
&=\pi\int_{0}^{\pi}f(\sin t)\mathrm{d}t-\int_{0}^{\pi}t f(\sin t)\mathrm{d}t\\
&=\pi\int_{0}^{\pi}f(\sin x)\mathrm{d}x-\int_{0}^{\pi}x f(\sin x)\mathrm{d}x,
\end{split}
\]
这推出
\[
\int_{0}^{\pi}x f(\sin x)\mathrm{d}x=\frac{\pi}{2}\int_{0}^{\pi}f(\sin x)\mathrm{d}x\ .
\]
(2)
记 $f(x)=\dfrac{\sin x}{1+\cos^2 x}$, 则由 (1) 中的结论,
\[
\begin{split}
\int_{0}^{\pi}\frac{x\sin x}{1+\cos^2 x}\mathrm{d}x&=\int_{0}^{\pi}xf(x)\mathrm{d}x=\frac{\pi}{2}\int_{0}^{\pi}f(x)\mathrm{d}x=\frac{\pi}{2}\int_{0}^{\pi}\frac{\sin x}{1+\cos^2 x}\mathrm{d}x\\
&=-\frac{\pi}{2}\int_{0}^{\pi}\frac{\mathrm{d}\cos x}{1+\cos^2 x}\stackrel{t=\cos x}{=}-\frac{\pi}{2}\int_{1}^{-1}\frac{\mathrm{d}t}{1+t^2}\\
&=\frac{\pi}{2}\cdot\arctan t\biggr|_{-1}^{1}=\frac{\pi}{2}\cdot\Bigl(\frac{\pi}{4}-(-\frac{\pi}{4})\Bigr)\\
&=\frac{\pi^2}{4}.
\end{split}
\]