利用柱坐标计算下列三重积分.
设 $\Omega$ 是由柱面 $y=\sqrt{2x-x^2}$ 及平面 $z=0$, $z=1$, $y=0$ 所围成的闭区域, 求
\[
\iiint_{\Omega}z\sqrt{x^2+y^2}\mathrm{d}V
\]
设 $\Omega$ 是由柱面 $y=\sqrt{2x-x^2}$ 及平面 $z=0$, $z=1$, $y=0$ 所围成的闭区域, 求
\[
\iiint_{\Omega}z\sqrt{x^2+y^2}\mathrm{d}V
\]
1
首先由柱面方程 $y=\sqrt{2x-x^2}$ 推出 $(x-1)^2+y^2=1$, 这里 $y\geqslant 0$.
令
\[
\begin{cases}
x=r\cos\theta,\\
y=r\sin\theta,\\
z=z,
\end{cases}
\]
这 $\theta\in[0,\frac{\pi}{2}]$, $r\in[0,2\cos\theta]$. 于是
\[
\begin{split}
\iiint_{\Omega}z\sqrt{x^2+y^2}\mathrm{d}V&=\int_{0}^{1}z\mathrm{d}z\int_{0}^{\frac{\pi}{2}}\mathrm{d}\theta\int_{0}^{2\cos\theta}r\cdot r\mathrm{d}r\\
&=\int_{0}^{1}z\mathrm{d}z\int_{0}^{\frac{\pi}{2}}\mathrm{d}\theta\cdot\frac{1}{3}r^3\biggr|_{0}^{2\cos\theta}\\
&=\int_{0}^{1}z\mathrm{d}z\int_{0}^{\frac{\pi}{2}}\frac{8}{3}\cos^3\theta\mathrm{d}\theta\\
&=\frac{1}{2}\cdot\frac{8}{3}\cdot\frac{2!!}{3!!}\\
&=\frac{8}{9}.
\end{split}
\]