Answer

问题及解答

双曲函数的性质

Posted by haifeng on 2023-09-05 17:13:13 last update 2023-09-05 17:13:13 | Edit | Answers (1)

证明:

  \[
  \begin{aligned}
  \sinh(x+y)=\sinh(x)\cosh(y)+\cosh(x)\sinh(y)\\
  \sinh(x-y)=\sinh(x)\cosh(y)-\cosh(x)\sinh(y)\\
  \cosh(x+y)=\cosh(x)\cosh(y)+\sinh(x)\sinh(y)\\
  \cosh(x-y)=\cosh(x)\cosh(y)-\sinh(x)\sinh(y)\\
  \end{aligned}
  \]

1

Posted by haifeng on 2023-09-05 17:19:17

证明:  我们只需证明第一式和第三式.  第二式只需注意到 $\sinh(x-y)=\sinh(x+(-y))$ 并利用第一式即可.


(1) 

\[
  \sinh(x+y)=\frac{e^{x+y}-e^{-x-y}}{2}
  \]

\[
  \begin{split}
  \sinh(x)\cosh(y)&=\frac{e^{x}-e^{-x}}{2}\cdot\frac{e^{y}+e^{-y}}{2}\\
  &=\frac{1}{4}\Bigl[e^{x+y}+e^{x-y}-e^{-x+y}-e^{-x-y}\Bigr]
  \end{split}
  \]

  \[
  \begin{split}
  \cosh(x)\sinh(y)&=\frac{e^{x}+e^{-x}}{2}\cdot\frac{e^{y}-e^{-y}}{2}\\
  &=\frac{1}{4}\Bigl[e^{x+y}-e^{x-y}+e^{-x+y}-e^{-x-y}\Bigr]
  \end{split}
  \]

  因此,
  \[
\begin{split}
  \sinh(x)\cosh(y)+\cosh(x)\sinh(y)&=\frac{1}{2}\Bigl[e^{x+y}-e^{-x-y}\Bigr]\\
&=\sinh(x+y).
\end{split}
  \]


(3)

\[
\cosh(x+y)=\frac{e^{x+y}+e^{-x-y}}{2}
\]

\[
  \begin{split}
  \cosh(x)\cosh(y)&=\frac{e^{x}+e^{-x}}{2}\cdot\frac{e^{y}+e^{-y}}{2}\\
  &=\frac{1}{4}\Bigl[e^{x+y}+e^{x-y}+e^{-x+y}+e^{-x-y}\Bigr]
  \end{split}
  \]

  \[
  \begin{split}
  \sinh(x)\sinh(y)&=\frac{e^{x}-e^{-x}}{2}\cdot\frac{e^{y}-e^{-y}}{2}\\
  &=\frac{1}{4}\Bigl[e^{x+y}-e^{x-y}-e^{-x+y}+e^{-x-y}\Bigr]
  \end{split}
  \]

  因此,
  \[
\begin{split}
  \cosh(x)\cosh(y)+\sinh(x)\sinh(y)&=\frac{1}{2}\Bigl[e^{x+y}+e^{-x-y}\Bigr]\\
&=\cosh(x+y).
\end{split}
  \]