Answer

问题及解答

设 $f(x)=\lim\limits_{n\rightarrow\infty}\sqrt[n]{1+x^n+(\frac{x^2}{2})^n}$, $x\geqslant 0$, 证明 $f(x)$ 是 $[0,+\infty)$ 上的连续函数.

Posted by haifeng on 2022-10-15 20:32:08 last update 2022-10-15 20:33:53 | Edit | Answers (1)

$f(x)$ 是定义在 $[0,+\infty)$ 上的函数, 具体为

\[f(x)=\lim\limits_{n\rightarrow\infty}\sqrt[n]{1+x^n+(\frac{x^2}{2})^n},\]

证明 $f(x)\in C([0,+\infty))$.

1

Posted by haifeng on 2022-10-16 10:23:23

[Idea] 先求特殊点处的值, 然后分段求出 $f(x)$, 事实上所得的 $f(x)$ 是一个分段函数.


当 $x=0$ 时,

\[f(0)=\lim_{n\rightarrow\infty}\sqrt[n]{1+0^n+(\frac{0^2}{2})^n}=\lim_{n\rightarrow\infty}\sqrt[n]{1}=1.\]


当 $x=1$ 时,

\[f(1)=\lim_{n\rightarrow\infty}\sqrt[n]{1+1^n+(\frac{1^2}{2})^n}=\lim_{n\rightarrow\infty}\sqrt[n]{2+\frac{1}{2^n}},\]

注意到

\[\sqrt[n]{2} < \sqrt[n]{2+\frac{1}{2^n}} < \sqrt[n]{3},\]

而 $\lim\limits_{n\rightarrow\infty}\sqrt[n]{a}=1$, 对任意 $a > 0$ 成立, 故 $\lim\limits_{n\rightarrow\infty}\sqrt[n]{2+\frac{1}{2^n}}=1$.


当 $x=\sqrt{2}$ 时,

\[f(\sqrt{2})=\lim_{n\rightarrow\infty}\sqrt[n]{1+(\sqrt{2})^n+(\frac{(\sqrt{2})^2}{2})^n}=\lim_{n\rightarrow\infty}\sqrt[n]{2+(\sqrt{2})^n},\]

注意到

\[
\sqrt{2}=\sqrt[n]{(\sqrt{2})^n} < \sqrt[n]{2+(\sqrt{2})^n} < \sqrt[n]{2\cdot(\sqrt{2})^n}=\sqrt[n]{2}\cdot\sqrt{2},
\]

故 $\lim\limits_{n\rightarrow\infty}\sqrt[n]{2+(\sqrt{2})^n}=\sqrt{2}$.


当 $x\in(0,1)$ 时, 

\[\sqrt[n]{1} < \sqrt[n]{1+x^n+(\frac{x^2}{2})^n} < \sqrt[n]{3},\]

故 $\lim\limits_{n\rightarrow\infty}\sqrt[n]{1+x^n+(\frac{x^2}{2})^n}=1$.


当 $x\in(1,\sqrt{2})$ 时,

\[x=\sqrt[n]{x^n} < \sqrt[n]{1+x^n+(\frac{x^2}{2})^n} < \sqrt[n]{1+x^n+1}=\sqrt[n]{2+x^n} < \sqrt[n]{2\cdot x^n}=\sqrt[n]{2}\cdot x,\]

故 $\lim\limits_{n\rightarrow\infty}\sqrt[n]{1+x^n+(\frac{x^2}{2})^n}=x$.


当 $x > \sqrt{2}$ 时,

\[\sqrt[n]{(\frac{x^2}{2})^n} < \sqrt[n]{1+x^n+(\frac{x^2}{2})^n} < \sqrt[n]{2\cdot(\frac{x^2}{2})^n}=\sqrt[n]{2}\cdot\frac{x^2}{2},\]

故 $\lim\limits_{n\rightarrow\infty}\sqrt[n]{1+x^n+(\frac{x^2}{2})^n}=\frac{x^2}{2}$.


综上,

\[
f(x)=\begin{cases}
1, & 0\leqslant x\leqslant 1,\\
x, & 1 < x\leqslant\sqrt{2},\\
\frac{x^2}{2}, & x > \sqrt{2}.
\end{cases}
\]