Answer

问题及解答

确定最优定价问题

Posted by haifeng on 2017-06-08 00:26:29 last update 2017-06-08 00:26:29 | Edit | Answers (1)

在考虑最优定价时设销售期为 $T$, 成本 $q$ 随时间增长, 不妨设单位商品的损耗成本是 $q(t)=q_0+\beta t$, 其中 $\beta$ 是增长率. 又设单位时间的销售量为 $x(p)=a-bp$ ($p$ 为价格).

今将销售期分为 $[0,\frac{T}{2}]$ 和 $[\frac{T}{2},T]$ 两个时间段, 每段的价格固定, 分别记作 $p_1, p_2$. 求 $p_1, p_2$ 的最优值, 使销售期内的总利润最大.

如果要求销售期 $T$ 内的总销售量为 $Q_0$, 求在此约束条件下的 $p_1, p_2$ 的最优值.

 

 


References:

姜启源、谢金星、叶俊 编 《数学建模》 P.82, Ex.6

1

Posted by haifeng on 2017-06-08 01:03:57

利润函数 $U(p_1,p_2)$ 为

\[
\begin{split}
U(p_1,p_2)&=p_1(a-bp_1)\cdot\frac{T}{2}-\int_0^{\frac{T}{2}}(q_0+\beta t)(a-bp_1)dt+p_2(a-bp_2)\cdot\frac{T}{2}-\int_{\frac{T}{2}}^T (q_0+\beta t)(a-bp_2)dt\\
&=(a-bp_1)\cdot\frac{T}{2}p_1-(a-bp_1)(q_0 t+\frac{\beta}{2}t^2)\biggr|_{0}^{\frac{T}{2}}+(a-bp_2)\cdot\frac{T}{2}p_2-(a-bp_2)(q_0 t+\frac{\beta}{2}t^2)\biggr|_{\frac{T}{2}}^T\\
&=(a-bp_1)\biggl[\frac{T}{2}p_1-\frac{T}{2}q_0-\frac{\beta T^2}{8}\biggr]+(a-bp_2)\biggl[\frac{T}{2}p_2-\frac{T}{2}q_0-\frac{3\beta T^2}{8}\biggr]
\end{split}
\]

于是

\[
\begin{aligned}
\frac{\partial U}{\partial p_1}&=-b\biggl[\frac{T}{2}p_1-\frac{T}{2}q_0-\frac{\beta T^2}{8}\biggr]+(a-bp_1)\frac{T}{2},\\
\frac{\partial U}{\partial p_2}&=-b\biggl[\frac{T}{2}p_2-\frac{T}{2}q_0-\frac{3\beta T^2}{8}\biggr]+(a-bp_2)\frac{T}{2},\\
\end{aligned}
\]

令 $\dfrac{\partial U}{\partial p_1}=\dfrac{\partial U}{\partial p_2}=0$, 得

\[
\begin{cases}
b(p_1-q_0-\dfrac{\beta T}{4})=a-bp_1,\\
b(p_2-q_0-\dfrac{3\beta T}{4})=a-bp_2,\\
\end{cases}
\]

解得

\[
\begin{cases}
p_1=\dfrac{a}{2b}+\dfrac{1}{2}(q_0+\dfrac{\beta T}{4}),\\
p_2=\dfrac{a}{2b}+\dfrac{1}{2}(q_0+\dfrac{3\beta T}{4}),\\
\end{cases}
\]

 


 

如果加上约束条件

\[
\begin{split}
Q_0&=\int_0^{\frac{T}{2}}(a-bp_1)dt+\int_{\frac{T}{2}}^{T}(a-bp_2)dt\\
&=(a-bp_1)\frac{T}{2}+(a-bp_2)\frac{T}{2}\\
&=aT-\frac{bT}{2}(p_1+p_2),
\end{split}
\]

我们使用 Lagrange 乘数法, 令

\[
\begin{split}
L(p_1,p_2,\lambda)&:=U(p_1,p_2)+\lambda\Bigl(aT-\frac{bT}{2}(p_1+p_2)-Q_0\Bigr)\\
&=(a-bp_1)\biggl[\frac{T}{2}p_1-\frac{T}{2}q_0-\frac{\beta T^2}{8}\biggr]+(a-bp_2)\biggl[\frac{T}{2}p_2-\frac{T}{2}q_0-\frac{3\beta T^2}{8}\biggr]\\
&\qquad+\lambda\Bigl(aT-\frac{bT}{2}(p_1+p_2)-Q_0\Bigr)\\
\end{split}
\]

令 $\dfrac{\partial L}{\partial p_1}=\dfrac{\partial L}{\partial p_2}=\dfrac{\partial L}{\partial\lambda}=0$, 得

\[
\begin{cases}
-b\biggl[\frac{T}{2}p_1-\frac{T}{2}q_0-\frac{\beta T^2}{8}\biggr]+(a-bp_1)\frac{T}{2}-\frac{\lambda bT}{2}&=0,\\
-b\biggl[\frac{T}{2}p_2-\frac{T}{2}q_0-\frac{3\beta T^2}{8}\biggr]+(a-bp_2)\frac{T}{2}-\frac{\lambda bT}{2}&=0,\\
aT-\frac{bT}{2}(p_1+p_2)&=Q_0.
\end{cases}
\]

推出

\[
\begin{cases}
2bp_1=a+b(q_0+\frac{\beta T}{4}-\lambda),\quad(1)\\
2bp_2=a+b(q_0+\frac{3\beta T}{4}-\lambda),\quad(2)\\
a-\frac{b}{2}(p_1+p_2)=\frac{Q_0}{T}.\quad(3)
\end{cases}
\]

(1)+(2) 可推出

\[
b(p_1+p_2)=a+b(q_0+\frac{\beta T}{2}-\lambda),
\]

代入 (3), 得

\[
a-\frac{1}{2}\Bigl[a+b(q_0+\frac{\beta T}{2}-\lambda)\Bigr]=\frac{Q_0}{T}
\]

求得

\[
\lambda=q_0+\frac{2Q_0}{bT}+\frac{\beta T}{2}-\frac{a}{b}.
\]

代入 (1), (2), 得

\[
\begin{split}
p_1&=\frac{a}{2b}+\frac{1}{2}\Bigl[q_0+\frac{\beta T}{4}-(q_0+\frac{2Q_0}{bT}+\frac{\beta T}{2}-\frac{a}{b})\Bigr]\\
&=\frac{a}{2b}+\frac{1}{2}\Bigl[\frac{a}{b}-\frac{2Q_0}{bT}-\frac{\beta T}{4}\Bigr]\\
&=\frac{a}{b}-\frac{Q_0}{bT}-\frac{\beta T}{8},
\end{split}
\]

\[
\begin{split}
p_2&=\frac{a}{2b}+\frac{1}{2}\Bigl[q_0+\frac{3\beta T}{4}-(q_0+\frac{2Q_0}{bT}+\frac{\beta T}{2}-\frac{a}{b})\Bigr]\\
&=\frac{a}{2b}+\frac{1}{2}\Bigl[\frac{a}{b}-\frac{2Q_0}{bT}+\frac{\beta T}{4}\Bigr]\\
&=\frac{a}{b}-\frac{Q_0}{bT}+\frac{\beta T}{8}.
\end{split}
\]