Answer

问题及解答

神奇的 6174

Posted by haifeng on 2015-12-28 00:22:00 last update 2015-12-28 00:40:49 | Edit | Answers (1)

设 $M=d_4 d_3 d_2 d_1$, 这里 $d_4\geqslant d_3\geqslant d_2\geqslant d_1$, 令 $N=d_1 d_2 d_3 d_4$. 假设 $M > N$.

计算 $T=M-N$. 并将 $T$ 的各个数字仍按照从大到小排列. 重新得到 $M_2=d_4^{(2)} d_3^{(2)} d_2^{(2)} d_1^{(2)}$, 仍简记为 $M_2=d_4 d_3 d_2 d_1$. 

试证: 经过有限步后得到 $T=6174$.


值得注意的是对于 $T=6174$, 将其数字进行排序得 $M=7641$, 于是 $N=1467$, 相减得 $T=7641-1467=6174$.

 

Note:

6174+4716=10890,

1089+9801=10890.

1

Posted by haifeng on 2016-01-04 04:35:32

Let $M=dcba$,  $d\geqslant c\geqslant b\geqslant a$;  $N=abcd$. Suppose that $N < M$.  We calculate $T=M-N$.

It is easy to show that T looks like $uzwv$,   where  $u+v=10$ and $z+w=8$.

\[
\begin{aligned}
&5+5=6+4=7+3=8+2=9+1=10,\\
&4+4=5+3=6+2=7+1=8+0=8.\\
\end{aligned}
\]

Hence, we only need to check the 25 cases:

9810,  9711,  9621,  9531,  9441;
8810,  8721,  8622,  8532,  8442;
8730,  7731,  7632,  7533,  7443;
8640,  7641,  6642,  6543,  6444;
8550,  7551,  6552,  5553,  5544.

All of above numbers' figures have been sorted.