Answer

问题及解答

若不等式 $\|\{a_n\}\|_{L^q}\leqslant A\|f\|_{L^q}$ 对所有 $f\in L^p$ 成立, 则有 $\frac{1}{p}+\frac{1}{q}\leqslant 1$.

Posted by haifeng on 2015-08-28 09:21:18 last update 2015-08-28 09:21:18 | Edit | Answers (1)

若不等式

\[
\|\{a_n\}\|_{L^q}\leqslant A\|f\|_{L^q}
\]

对所有 $f\in L^p$ 成立, 其中 $a_n=\frac{1}{2\pi}\int_0^{2\pi}f(\theta)e^{-in\theta}d\theta$.

证明: $\frac{1}{p}+\frac{1}{q}\leqslant 1$.

1

Posted by haifeng on 2015-08-28 11:28:27

(证明有问题, 待修改)

令 $D_N(\theta)=\sum\limits_{|n| < N}e^{in\theta}$ 为 Dirichlet Kernel. 则当 $p > 1$ 时, $\|D_N\|_{L^p}\approx N^{1-\frac{1}{p}}$ ($N\rightarrow +\infty$). 

\[
D_N(\theta)=\frac{\sin(N+\frac{1}{2})\theta}{\sin\frac{\theta}{2}} ?
\]

\[
\frac{\theta}{\pi}\leqslant\sin\theta\leqslant\theta,\quad\theta\in[0,\pi]  ?
\]

\[
C_1\frac{\sin(N+\frac{1}{2})\theta}{\sin\frac{\theta}{2}}\leqslant|D_N(\theta)|\leqslant C_2\frac{\sin(N+\frac{1}{2})\theta}{\sin\frac{\theta}{2}}
\]

令 $f(\theta)=D_N(\theta)$, 则

\[
\begin{split}
a_n&=\frac{1}{2\pi}\int_0^{2\pi}(\sum_{|n| < N}e^{in\theta})e^{-in\theta}d\theta\\
&=\frac{1}{2\pi}\int_0^{2\pi}\Bigl(1+\sum_{|m| < N,m\neq n}e^{i(m-n)\theta}\Bigr)d\theta\\
&=1+\frac{1}{2\pi}\sum_{|m| < N,m\neq n}\int_0^{2\pi}e^{i(m-n)\theta}d\theta\\
&=1+\frac{1}{2\pi}\sum_{|m| < N,m\neq n}\int_0^{2\pi}\bigl(\cos(m-n)\theta+i\sin(m-n)\theta\bigr)d\theta\\
&=1+0\\
&=1.
\end{split}
\]

若 $p > 1$, 则

\[
\|\{a_n\}\|_{L^q}=\Bigl(\sum_{n=1}^{N}(a_n)^q\Bigr)^{\frac{1}{q}}=N^{\frac{1}{q}}\leqslant A\cdot\|f\|_{L^q}=A\cdot\|D_N(\theta)\|_{L^q}.
\]

\[
\begin{split}
\|D_N(\theta)\|_{L^q}&=\|\sum_{|n| < N}e^{in\theta}\|_{L^q}\leqslant\sum_{|n| < N}\|e^{in\theta}\|_{L^q}=\sum_{|n| < N}\Bigl(\int_0^{2\pi}|e^{in\theta}|^q\Bigr)^{\frac{1}{q}}\\
&=\sum_{|n| < N}(2\pi)^{\frac{1}{q}}\\
&=\sum_{|n| < N}\Bigl(\int_0^{2\pi}|e^{in\theta}|^p\Bigr)^{\frac{1}{q}}\\
&=[(2N-1)\cdot(2\pi)^{\frac{1}{p}}]^{\frac{p}{q}}\cdot\frac{2N-1}{(2N-1)^{\frac{p}{q}}}\\
&=(2N-1)^{1-\frac{p}{q}}\cdot\|D_N(\theta)\|_{L^p}\\
&\approx (2N-1)^{1-\frac{p}{q}}\cdot N^{1-\frac{1}{p}},
\end{split}
\]

\[
\|D_N(\theta)\|_{L^q}\approx N^{1-\frac{1}{q}}
\]

因此

\[
N^{\frac{1}{q}}\leqslant A\cdot (2N-1)^{1-\frac{p}{q}}\cdot N^{1-\frac{1}{p}},
\]

这推出

\[
1\leqslant A\cdot (2N-1)^{1-\frac{p}{q}}\cdot N^{1-\frac{1}{p}-\frac{1}{q}}.
\]

如果 $\frac{1}{p}+\frac{1}{q}>1$, 则上式右边趋于0(当 $N\rightarrow+\infty$ 时), 故必有 $\frac{1}{p}+\frac{1}{q}\leqslant 1$.