设 $f(x)=2-\int_0^1\frac{x+\sin t}{1+t^2}dt$
设 $f(x)=2-\int_0^1\frac{x+\sin t}{1+t^2}dt$, $p(x)=ax^2+bx+c$, 求常数 $a,b,c$, 使得
\[p(0)=f(0),\quad p'(0)=f'(0),\quad p''(0)=f''(0).\]
并判断 $f(x)$ 的奇偶性.
Remark:
关于 $\int_0^1\frac{\sin t}{1+t^2}dt$ 可以参见问题1407
设 $f(x)=2-\int_0^1\frac{x+\sin t}{1+t^2}dt$, $p(x)=ax^2+bx+c$, 求常数 $a,b,c$, 使得
\[p(0)=f(0),\quad p'(0)=f'(0),\quad p''(0)=f''(0).\]
并判断 $f(x)$ 的奇偶性.
Remark:
关于 $\int_0^1\frac{\sin t}{1+t^2}dt$ 可以参见问题1407
1
\[
\begin{split}
f(x)&=2-x\int_0^1\frac{1}{1+t^2}dt-\int_0^1\frac{\sin t}{1+t^2}dt\\
&=2-x\cdot\arctan t\biggr|_{0}^{1}-\int_0^1\frac{\sin t}{1+t^2}dt\\
&=-\frac{\pi}{4}x+2-\int_0^1\frac{\sin t}{1+t^2}dt.
\end{split}
\]
由于
\[
p'(x)=2ax+b,\quad p''(x)=2a,
\]
所以根据题设有
\[
\begin{cases}
c=p(0)=f(0),\\
b=p'(0)=f'(0)=-\frac{\pi}{4},\\
2a=p''(0)=f''(0)=0.
\end{cases}
\]
由于 $\int_0^1\frac{\sin t}{1+t^2}dt\leqslant\int_0^1\frac{1}{1+t^2}dt=\frac{\pi}{4}$, 所以 $2-\int_0^1\frac{\sin t}{1+t^2}dt>0$. 因此, $f(x)$ 既非奇函数亦非偶函数.