Answer

问题及解答

Riemann-zeta 函数

Posted by haifeng on 2013-12-29 22:01:20 last update 2017-04-13 10:48:25 | Edit | Answers (2)

Riemann 将 Euler 的 Zeta 函数 $\zeta(s):=\sum_{n=1}^{\infty}\dfrac{1}{n^s}$ 扩展定义到复平面 $\mathbb{C}$ 上. $s=1$ 是单极点. Riemann 注意到, 这个 zeta 函数在 $-2,-4,-6,\ldots$ 处有平凡零点. Riemann 计算了一些非平凡零点, 都位于直线 $\mathrm{Re}(s)=\frac{1}{2}$ 上. Riemann hypothesis 就是断言: 所有非平凡零点都在此直线上.

 

设 $s$ 是实部大于 1 的复变量. 定义 Riemann zeta 函数为
\[
\zeta(s):=\sum_{n=1}^{\infty}\dfrac{1}{n^s},
\]
容易证明这个级数是绝对收敛的. 事实上
\[
\biggl|\dfrac{1}{n^s}\biggr|=\dfrac{1}{|n^s|}=\dfrac{1}{n^{\Re(s)}}.
\]
这里要指出的是, 一般 $n^s$ 认为是一个多值函数, 我们取其中一个分支.
\[n^s=e^{s\mathrm{Log}n}=e^{s(\log n+i(\mathrm{arg}n+2k\pi))},\]

我们这里取 $k=0$.

Riemann 证明了这个复变函数可以通过解析延拓而成为 $\mathbb{C}$ 上的一个亚纯函数, 仅有一个单极点 $s=1$, 在该极点处的留数为 1. 并且满足下面的泛函方程
\[
\pi^{-\frac{s}{2}}\Gamma\Bigl(\dfrac{s}{2}\Bigr)\zeta(s)=\pi^{-\frac{1-s}{2}}\Gamma\Bigl(\dfrac{1-s}{2}\Bigr)\zeta(1-s).
\]

这里 $\Gamma(s)=\int_0^{+\infty}e^{-t}t^s\cdot\frac{dt}{t}$ 是 Gamma 函数. 我们记

\[
\widehat{\zeta}(s)=\pi^{-\frac{s}{2}}\Gamma\Bigl(\dfrac{s}{2}\Bigr)\zeta(s).
\]

于是有 $\widehat{\zeta}(1-s)=\widehat{\zeta}(s)$, $\forall\ s\in\mathbb{C}$.

 

若 $s\in\mathbb{R}$ 且 $s > 1$, 记 $x=s$, 则 $\zeta(s)=\zeta(x)$ 可用下面的公式计算

\[
\zeta(x)=\frac{1}{\Gamma(x)}\int_0^{\infty}\frac{u^{x-1}}{e^u-1}du.
\]

特别的, 当 $x=n$ 时, 可以推出 $\zeta(n)=\sum\limits_{k=1}^{\infty}\dfrac{1}{k^n}$.


 

Weng Zeta 函数(by Lin Weng)在 $n=2$ 时是

\[
\hat{\zeta}_2(s)=\frac{\hat{\zeta}(2s)}{-2+2s}-\frac{\hat{\zeta}(-1+2s)}{2s}.
\]


\[
\begin{aligned}
\zeta(1)&=\infty\\
\zeta(2)&=\frac{\pi^2}{6}=1.644934066848226436472415166646\ldots\\
\zeta(3)&=1.2020569032\ldots\\
\zeta(4)&=\frac{\pi^4}{90}=1.0823232337111381915160036965412\ldots\\
\zeta(5)&=1.0369277551\ldots\\
\zeta(6)&=\frac{\pi^6}{945}=1.0173430619844491397145179297909\ldots\\
\zeta(7)&=1.0083492774\ldots\\
\zeta(8)&=\frac{\pi^8}{9450}=1.0040773561979443393786852385087\ldots\\
\zeta(9)&=1.0020083928\ldots\\
\zeta(10)&=\frac{\pi^{10}}{93555}=1.0009945751278180853371459589003\ldots\\
\end{aligned}
\]

 


References:

http://mathworld.wolfram.com/RiemannZetaFunction.html

1

Posted by haifeng on 2015-09-21 13:26:53

若 $s\in\mathbb{R}$ 且 $s > 1$, 记 $x=s$, 则 $\zeta(s)=\zeta(x)$ 可用下面的公式计算

\[
\zeta(x)=\frac{1}{\Gamma(x)}\int_0^{\infty}\frac{u^{x-1}}{e^u-1}du.
\]

特别的, 当 $x=n$ 时, 可以推出 $\zeta(n)=\sum\limits_{k=1}^{\infty}\frac{1}{k^n}$.


Proof.

\[
\frac{u^{n-1}}{e^n-1}=\frac{e^{-u}u^{n-1}}{1-e^{-u}}=e^{-u}u^{n-1}\cdot\sum_{k=0}^{\infty}(e^{-u})^k=\sum_{k=1}^{\infty}e^{-ku}u^{n-1}.
\]

因此

\[
\begin{split}
\zeta(n)&=\frac{1}{\Gamma(n)}\int_0^{\infty}\frac{u^{n-1}}{e^n-1}du\\
&=\frac{1}{\Gamma(n)}\sum_{k=1}^{\infty}\int_0^{\infty}e^{-ku}u^{n-1}du\\
&=\frac{1}{\Gamma(n)}\sum_{k=1}^{\infty}\int_0^{\infty}e^{-y}(\frac{y}{k})^{n-1}\cdot\frac{1}{k}dy\\
&=\frac{1}{\Gamma(n)}\sum_{k=1}^{\infty}\frac{1}{k^n}\cdot\int_0^{\infty}e^{-y}y^{n-1}dy\\
&=\frac{1}{\Gamma(n)}\sum_{k=1}^{\infty}\frac{1}{k^n}\cdot\Gamma(n)\\
&=\sum_{k=1}^{\infty}\frac{1}{k^n}.
\end{split}
\]

2

Posted by haifeng on 2021-06-28 14:06:59

可以通过 Calculator 计算 $\zeta(n)$.

\[
\zeta(n)=\sum_{k=1}^{\infty}\frac{1}{k^n}
\]


设置计算过程中精度 100

>> setprecision(100)
in> setprecision(100)
Now the precision is: 100

------------------------

使用 sum() 函数,  不过收敛比较慢.

>> sum(1/k^2,k,1,10000)
in> sum(1/k^2,k,1,10000)

out> 1.6448340718480597698060818333103109035379975194968417530902024173487663706543098955273470011346545709

------------------------

>> sum(1/k^3,k,1,10000)
in> sum(1/k^3,k,1,10000)

out> 1.2020568981600942603997382448447824907650012923400822151420572687525525517839269155441543111355284529

------------------------

>> sum(1/k^4,k,1,10000)
in> sum(1/k^4,k,1,10000)

out> 1.0823232337108049081793370298911679025525287346965045187940950043325428384453610652976243290815953292

------------------------

>> sum(1/k^5,k,1,10000)
in> sum(1/k^5,k,1,10000)

out> 1.0369277551433699013363650697903704180570309195032878119200260141163033914529653319748819817914030616

------------------------

>> sum(1/k^6,k,1,10000)
in> sum(1/k^6,k,1,10000)

out> 1.0173430619844491397125184297409205283684841466995205585090601640052535161638912380884065070436476201

------------------------

>> sum(1/k^7,k,1,10000)
in> sum(1/k^7,k,1,10000)

out> 1.0083492773819228268397973832331242595999335605634053731554497994466017393617775697929467180500082873

------------------------

>> sum(1/k^8,k,1,10000)
in> sum(1/k^8,k,1,10000)

out> 1.0040773561979443393786852384943717503065798482688973250910292645564781907371126174590975101347900771

------------------------

>> sum(1/k^9,k,1,10000)
in> sum(1/k^9,k,1,10000)

out> 1.0020083928260822144178527692324108109855308513962637564975251900196062977950362460677449383921250867

------------------------

>> sum(1/k^10,k,1,10000)
in> sum(1/k^10,k,1,10000)

out> 1.0009945751278180853371459589003190168949584121200332561466699390812125762261907357175653636175864613

------------------------

 

>> sum(1/k^100,k,1,10000)
in> sum(1/k^100,k,1,10000)

out> 1.0000000000000000000000000000007888609052210118073520537827660413687896253431459412623465793379703382

------------------------

>> sum(1/k^1000,k,1,10000)
in> sum(1/k^1000,k,1,10000)

out> 1.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

 


Question:

\[
\lim_{n\rightarrow\infty}\zeta(n)=1 ?
\]

Answer:  翁林老师在邮件中提到这是正确的, 在 [1] P. 252 倒数第13行, 讲到

\[
\zeta(n)-\sum_{j=1}^{m-1}j^{-n}
\]

大致与 $\frac{1}{m^n}$ 相当.

 

 

References:

[1] Jonathan M. Borweina; David M. Bradley, Richard E. Crandall,  Computational strategies for the Riemann zeta function