首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

几何 >> 微分几何 >> 流形基础 >> 子流形
Questions in category: 子流形 (Submanifolds).

$f(t)=(e^{i2\pi t},e^{i2\pi\alpha t})$ 当 $\alpha$ 是正无理数时, 其像在 $S^1\times S^1$ 中稠密.

Posted by haifeng on 2015-07-22 10:25:25 last update 2015-07-28 13:44:46 | Answers (3)


设 $\alpha$ 为正无理数, 考虑映射

\[
f:\ \mathbb{R}\rightarrow S^1\times S^1,\quad f(t)=(e^{i2\pi t},e^{i2\pi\alpha t}).
\]

证明 $f$ 为单浸入, 且其像在 $S^1\times S^1$ 中稠密;

推广这个结果, 证明存在单浸入 $f:\ \mathbb{R}\rightarrow T^n$, 使得 $f(\mathbb{R})$ 在 $T^n$ 中稠密.


 

参考徐森林 《流形》