Answer

问题及解答

平面曲线的曲率如果处处为零, 则必为直线.

Posted by haifeng on 2012-03-12 16:28:44 last update 2012-07-26 09:23:49 | Edit | Answers (1)

证明: 设 $c:I\rightarrow\mathbb{R}^2$ 是一平面曲线, $e_1,e_2:I\rightarrow\mathbb{R}^2$ 是该曲线的典型活动标架(distinguished Frenet frame), 则满足下面的方程.

\[\dot{e}_i(t)=\sum_{j}\omega_{ij}(t)e_j(t),\]

其中 $\omega_{ij}(t):=\dot{e}_i(t)\cdot e_j(t)=-\omega_{ji}(t)$.

曲线的第 $i$ 个曲率($i=1,2,\ldots,n-1$)定义为

\[K_i(t):=\frac{\omega_{i,i+1}(t)}{|\dot{c}(t)|}.\]

这里考虑的是平面曲线, 于是只有 $K_1$, 一般记为 $\kappa(t)$. 且由题设等于0. 因此 $\omega_{12}(t)=0,\ \forall\ t\in I$. 从而 $\dot{e}_1(t)\cdot e_2(t)=0$, 又 $e_1(t)=\dot{c}(t)/|\dot{c}(t)|$, 因此 $\dot{e}_1(t)=0,\ \forall\ t\in I$ (具体见答案, 注意并不能推出 $\ddot{c}(t)\equiv 0$), 这推出在某个参数 $s$ 下, $c:I\rightarrow\mathbb{R}^2$ 是线性映射, 即是一平面曲线.

事实上, 我们可以得到下面关于直线的刻画命题.

对于平面直线, 下面的条件是等价的.

(1) $\kappa(t)=0$, 对所有 $t\in I$;

(2) $c$ 可以表示为 $c(t)=(t-t_0)v+v_0$, 其中 $t_0\in\mathbb{R}$, $v,v_0\in\mathbb{R}^2$, 且 $v\neq 0$. 即 $c$ 是一条直线.


References:

GTM51, Wilhelm Klingenberg, A Course in Differential Geometry. 微分几何教程.

 

1

Posted by haifeng on 2012-06-19 00:18:40

我们来证明

\[\dot{e}_1(t)\cdot e_2(t)=0\Rightarrow\dot{e}_1(t)=0\]

回忆, 标架场 $\{e_i(t)\}$ 是采用 Gram-Schmidt 正交化得来的. 因此 $e_1(t)=\frac{\dot{c}(t)}{|\dot{c}(t)|}$,

\[\widetilde{e}_2(t):=\ddot{c}(t)-(\ddot{c}(t)\cdot e_1(t))e_1(t),\]

而 $e_2(t)=\frac{\widetilde{e}_2(t)}{|\widetilde{e}_2(t)|}$. 因此由 $\dot{e}_1(t)\cdot e_2(t)=0$ 得

\[
\frac{\ddot{c}(t)|\dot{c}(t)|-\dot{c}(t)(|\dot{c}(t)|)^{.}}{|\dot{c}(t)|^2}\cdot\frac{\widetilde{e}_2(t)}{|\widetilde{e}_2(t)|}=0,
\]

这推出

\[
\begin{split}
0&=\biggl(\ddot{c}(t)|\dot{c}(t)|-\dot{c}(t)\frac{\langle\dot{c}(t),\ddot{c}(t)\rangle}{|\dot{c}(t)|}\biggr)\cdot\biggl(\ddot{c}(t)-\frac{\langle\dot{c}(t),\ddot{c}(t)\rangle}{|\dot{c}(t)|^2}\dot{c}(t)\biggr)\\
&=|\ddot{c}(t)|^2|\dot{c}(t)|-\frac{\langle\dot{c}(t),\ddot{c}(t)\rangle^2}{|\dot{c}(t)|}-\frac{\langle\dot{c}(t),\ddot{c}(t)\rangle^2}{|\dot{c}(t)|}+\frac{\langle\dot{c}(t),\ddot{c}(t)\rangle^2|\dot{c}(t)|^2}{|\dot{c}(t)|^3}\\
&=|\ddot{c}(t)|^2|\dot{c}(t)|-\frac{\langle\dot{c}(t),\ddot{c}(t)\rangle^2}{|\dot{c}(t)|},
\end{split}
\]

从而

\[|\ddot{c}(t)||\dot{c}(t)|=|\langle\dot{c}(t),\ddot{c}(t)\rangle|\]

注意到 $\dot{c}(t)\neq 0$, 故推出 $|\ddot{c}(t)|=|\ddot{c}(t)||\cos\alpha(t)|$, 其中 $\alpha(t)$ 指 $\ddot{c}(t)$ 与 $\dot{c}(t)$ 的夹角. 若 $\ddot{c}(t)\neq 0$, 则 $\ddot{c}(t)=k(t)\dot{c}(t)$. 即 $\dot{c}(t)$ 与 $\ddot{c}(t)$ 线性相关, 因此根据 $\widetilde{e}_2(t)$ 的定义, $e_2(t)\perp e_1(t)$. 而此时

\[
\begin{split}
\dot{e}_1(t)&=\frac{\ddot{c}(t)|\dot{c}(t)|-\dot{c}(t)\frac{\langle\dot{c}(t),\ddot{c}(t)\rangle}{|\dot{c}(t)|}}{|\dot{c}(t)|^2}\\
&=\frac{k(t)\dot{c}(t)|\dot{c}(t)|-\dot{c}(t)\frac{\langle\dot{c}(t),k(t)\dot{c}(t)\rangle}{|\dot{c}(t)|}}{|\dot{c}(t)|^2}\\
&\equiv 0
\end{split}
\]


注意, 此时不是通过下式来定义 $\widetilde{e}_2(t)$ 的.

\[
\begin{split}
\widetilde{e}_2(t)&=\ddot{c}(t)-(\ddot{c}(t)\cdot e_1(t))e_1(t)\\
&=k(t)\dot{c}(t)-(k(t)\dot{c}(t)\cdot\frac{\dot{c}(t)}{|\dot{c}(t)|})\frac{\dot{c}(t)}{|\dot{c}(t)|}\\
&=k(t)\dot{c}(t)-k(t)\dot{c}(t)=0,
\end{split}
\]

于是 $e_2(t)=0$.


变换参数, 使得 $\dot{c}(s)=e_1(t)$, 从而推出 $\ddot{c}(s)=\dot{e}_1(t)t\'(s)\equiv 0$, 故而推出 $c$ 是直线. 若仍从参数 $t$ 的角度, 则可认为 $c$ 在作变速直线运动, 故不一定有 $\ddot{c}(t)\equiv 0$.