设 $z=(x^2+y^2)^{xy}$, 求 $z$ 关于 $x$ 和 $y$ 的偏导数.
设 $z=(x^2+y^2)^{xy}$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.
设 $z=(x^2+y^2)^{xy}$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.
1
\[
z=(x^2+y^2)^{xy}=e^{xy\ln(x^2+y^2)}
\]
故
\[
\frac{\partial z}{\partial x}=e^{xy\ln(x^2+y^2)}\biggl[y\ln(x^2+y^2)+xy\cdot\frac{2x}{x^2+y^2}\biggr]=(x^2+y^2)^{xy}\biggl[y\ln(x^2+y^2)+\frac{2x^2 y}{x^2+y^2}\biggr],
\]
\[
\frac{\partial z}{\partial y}=e^{xy\ln(x^2+y^2)}\biggl[x\ln(x^2+y^2)+xy\cdot\frac{2y}{x^2+y^2}\biggr]=(x^2+y^2)^{xy}\biggl[x\ln(x^2+y^2)+\frac{2xy^2}{x^2+y^2}\biggr].
\]