设 $f(x)$ 连续, 证明: $\int_0^1\mathrm{d}y\int_{0}^{\sqrt{y}}e^y f(x)\mathrm{d}x=\int_0^1(e-e^{x^2})f(x)\mathrm{d}x$.
设 $f(x)$ 连续, 证明: $\int_0^1\mathrm{d}y\int_{0}^{\sqrt{y}}e^y f(x)\mathrm{d}x=\int_0^1(e-e^{x^2})f(x)\mathrm{d}x$.
设 $f(x)$ 连续, 证明: $\int_0^1\mathrm{d}y\int_{0}^{\sqrt{y}}e^y f(x)\mathrm{d}x=\int_0^1(e-e^{x^2})f(x)\mathrm{d}x$.
1
Pf. 左边累次积分的积分区域为
\[
D=\{(x,y)\in\mathbb{R}^2\mid 0\leqslant y\leqslant 1, 0\leqslant x\leqslant \sqrt{y}\}.
\]
即 $D$ 是由抛物线 $y=x^2$, 直线 $y=1$ 和 $y$ 轴围成的闭区域.
将其转换为 $X$-型区域计算即可.
\[
\begin{split}
\int_0^1\mathrm{d}y\int_{0}^{\sqrt{y}}e^y f(x)\mathrm{d}x&=\int_0^1\mathrm{d}x\int_{x^2}^{1}e^y f(x)\mathrm{d}y\\
&=\int_0^1 f(x)\mathrm{d}x\cdot\int_{x^2}^{1}e^y\mathrm{d}y\\
&=\int_0^1 f(x)\cdot(e^y)\biggr|_{y=x^2}^{y=1}\mathrm{d}x\\
&=\int_0^1(e-e^{x^2})f(x)\mathrm{d}x
\end{split}
\]