Answer

问题及解答

设 $x_n=\sum\limits_{k=1}^{n}\frac{1}{\sqrt{k}}-2\sqrt{n}$, 证明 $\lim\limits_{n\rightarrow\infty}x_n$ 存在.

Posted by haifeng on 2025-01-18 10:34:34 last update 2025-01-18 10:34:34 | Edit | Answers (1)

设 $x_n=\sum\limits_{k=1}^{n}\frac{1}{\sqrt{k}}-2\sqrt{n}$, 证明 $\lim\limits_{n\rightarrow\infty}x_n$ 存在.

1

Posted by haifeng on 2025-01-18 12:47:41

证明:

(1)  $\{x_n\}$ 是递减数列.

\[ \begin{split} x_{n+1}-x_n&=\biggl(\sum_{k=1}^{n+1}\frac{1}{\sqrt{k}}-2\sqrt{n+1}\biggr)-\biggl(\sum_{k=1}^{n}\frac{1}{\sqrt{k}}-2\sqrt{n}\biggr)\\ &=\frac{1}{\sqrt{n+1}}-2(\sqrt{n+1}-\sqrt{n})=\frac{1}{\sqrt{n+1}}-\frac{2}{\sqrt{n+1}+\sqrt{n}} < 0 \end{split} \]

(2) $\{x_n\}$ 存在下界.

利用

\[
2(\sqrt{k+1}-\sqrt{k})=\frac{2}{\sqrt{k+1}+\sqrt{k}}< \frac{1}{\sqrt{k}},
\]

我们有

\[
\begin{split}
x_n&=\sum_{k=1}^{n}\frac{1}{\sqrt{k}}-2\sqrt{n} > \sum_{k=1}^{n}2(\sqrt{k+1}-\sqrt{k})-2\sqrt{n}\\
& > 2(\sqrt{n+1}-1)-2\sqrt{n}=\frac{2}{\sqrt{n+1}+\sqrt{n}}-2\\
& > -2
\end{split}
\]

因此, $\{x_n\}$ 有下界.