若 $\lim\limits_{x\rightarrow 0}\frac{f(2x)}{x}=2$, 则 $\lim\limits_{x\rightarrow\infty}xf(\frac{1}{2x})$ 的值是多少?
若 $\lim\limits_{x\rightarrow 0}\frac{f(2x)}{x}=2$, 则 $\lim\limits_{x\rightarrow\infty}xf(\frac{1}{2x})$ 的值是多少?
若 $\lim\limits_{x\rightarrow 0}\frac{f(2x)}{x}=2$, 则 $\lim\limits_{x\rightarrow\infty}xf(\frac{1}{2x})$ 的值是多少?
1
令 $t=\frac{1}{4x}$, 则
\[
\lim_{x\rightarrow\infty}xf(\frac{1}{2x})=\lim_{t\rightarrow 0}\frac{1}{4t}f(2t)=\frac{1}{4}\lim_{t\rightarrow 0}\frac{1}{t}f(2t)=\frac{1}{4}\cdot 2=\frac{1}{2}.
\]
2
由所给条件, $\lim\limits_{x\rightarrow 0}\frac{f(2x)}{2x}=1$, 因此 $f(x)\sim x$ ($x\rightarrow 0$).
因此
\[
\lim_{x\rightarrow\infty}xf(\frac{1}{2x})=\lim_{x\rightarrow\infty}x\cdot\frac{1}{2x}=\frac{1}{2}.
\]