Answer

问题及解答

求下列方程的积分因子, 并求其通解.

Posted by haifeng on 2024-06-01 21:21:24 last update 2024-06-01 21:21:24 | Edit | Answers (2)

求下列方程的积分因子, 并求其通解.

1.     $y\mathrm{d}x-x\mathrm{d}y+xy^2\mathrm{d}x=0$.

 

2.     $(1+xy)y\mathrm{d}x+(1-xy)x\mathrm{d}y=0$.

1

Posted by haifeng on 2024-06-01 21:32:57

1.   方程两边同乘以 $\mu(x,y)=\frac{1}{y^2}$, 得

\[
\frac{y\mathrm{d}x-x\mathrm{d}y}{y^2}+x\mathrm{d}x=0.
\]

这推出

\[
\mathrm{d}\Bigl(\frac{x}{y}\Bigr)+\frac{1}{2}\mathrm{d}x^2=0.
\]

即有

\[
\frac{x}{y}+\frac{1}{2}x^2=C.
\]

2

Posted by haifeng on 2024-06-03 10:39:07

2.    方程化为

\[
(y\mathrm{d}x+x\mathrm{d}y)+(xy^2\mathrm{d}x-x^2 y\mathrm{d}y)=0.
\]

这推出

\[
\mathrm{d}(xy)+xy(y\mathrm{d}x-x\mathrm{d}y)=0.
\]

两边同乘以 $\dfrac{1}{(xy)^2}$, 得

\[
\frac{1}{(xy)^2}\mathrm{d}(xy)+\frac{y\mathrm{d}x-x\mathrm{d}y}{xy}=0.
\]

这推出

\[
-\mathrm{d}(\frac{1}{xy})+\frac{1}{x}\mathrm{d}x-\frac{1}{y}\mathrm{d}y=0.
\]

\[
\mathrm{d}\Bigr(-\frac{1}{xy}+\ln |x|-\ln|y|\Bigr)=0.
\]

因此, 原微分方程的解为

\[
-\frac{1}{xy}+\ln\biggl|\frac{x}{y}\biggr|=C.
\]

或化简为

\[
\frac{x}{y}=Ce^{\frac{1}{xy}}.
\]