Answer

问题及解答

设 $S_n=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}$, 求 $[S_{2024}]$.

Posted by haifeng on 2024-05-04 21:44:33 last update 2024-05-29 18:30:44 | Edit | Answers (2)

\[S_n=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}},\]

求 $[S_{2024}]$.

1

Posted by haifeng on 2024-05-04 21:50:06

考虑定义在 $[1,2025]$ 上的连续函数 $f(x)=\frac{1}{\sqrt{x}}$. 易见

\[
\sum_{n=2}^{2025}\frac{1}{\sqrt{n}} < \int_{1}^{2025}\frac{1}{\sqrt{x}}\mathrm{d}x < \sum_{n=1}^{2024}\frac{1}{\sqrt{n}}.
\]

\[
\int_{1}^{2025}\frac{1}{\sqrt{x}}\mathrm{d}x=(2\sqrt{x})\biggr|_{1}^{2025}=2(\sqrt{2025}-1)=2(45-1)=88.
\]

因此

\[
(1+\sum_{n=2}^{2024}\frac{1}{\sqrt{n}})+(\frac{1}{\sqrt{2025}}-1) < 88 < \sum_{n=1}^{2024}\frac{1}{\sqrt{n}},
\]

这推出

\[
88 < \sum_{n=1}^{2024}\frac{1}{\sqrt{n}} < 88+1-\frac{1}{\sqrt{2025}}.
\]

即有

\[
[S]=\biggl[\sum_{n=1}^{2024}\frac{1}{\sqrt{n}}\biggr]=88.
\]

2

Posted by haifeng on 2024-05-04 21:54:07

使用 Sowya 中的clox语言编程.

>> :mode clox

> {
fun S(n){
  var i;
  var sum=0;
  var t;
  for(i=1; i<=n; i=i+1){
    t=sqrt(i);
    sum=sum+1/t;
  }
  return sum;
 }
}
> print S(2024);
88.52853395>