设 $S_n=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}$, 求 $[S_{2024}]$.
设
\[S_n=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}},\]
求 $[S_{2024}]$.
设
\[S_n=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}},\]
求 $[S_{2024}]$.
1
考虑定义在 $[1,2025]$ 上的连续函数 $f(x)=\frac{1}{\sqrt{x}}$. 易见
\[
\sum_{n=2}^{2025}\frac{1}{\sqrt{n}} < \int_{1}^{2025}\frac{1}{\sqrt{x}}\mathrm{d}x < \sum_{n=1}^{2024}\frac{1}{\sqrt{n}}.
\]
而
\[
\int_{1}^{2025}\frac{1}{\sqrt{x}}\mathrm{d}x=(2\sqrt{x})\biggr|_{1}^{2025}=2(\sqrt{2025}-1)=2(45-1)=88.
\]
因此
\[
(1+\sum_{n=2}^{2024}\frac{1}{\sqrt{n}})+(\frac{1}{\sqrt{2025}}-1) < 88 < \sum_{n=1}^{2024}\frac{1}{\sqrt{n}},
\]
这推出
\[
88 < \sum_{n=1}^{2024}\frac{1}{\sqrt{n}} < 88+1-\frac{1}{\sqrt{2025}}.
\]
即有
\[
[S]=\biggl[\sum_{n=1}^{2024}\frac{1}{\sqrt{n}}\biggr]=88.
\]
2
使用 Sowya 中的clox语言编程.
>> :mode clox
> {
fun S(n){
var i;
var sum=0;
var t;
for(i=1; i<=n; i=i+1){
t=sqrt(i);
sum=sum+1/t;
}
return sum;
}
}
> print S(2024);
88.52853395>