若 $abc=1$, 求 $\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ca+c+1}$ 的值.
若 $abc=1$, 求 $\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ca+c+1}$ 的值.
注: 这道题硬算也是可以的.
若 $abc=1$, 求 $\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ca+c+1}$ 的值.
注: 这道题硬算也是可以的.
1
wbswlgydj 的方法非常简洁, 推荐.
2
Pf. $a,b,c$ 三数均非零, 因为 $abc=1$.
\[
\dfrac{a}{ab+a+1}=\dfrac{1}{b+1+\frac{1}{a}}=\dfrac{1}{b+1+bc},
\]
\[
\dfrac{c}{ca+c+1}=\dfrac{bc}{bca+bc+b}=\dfrac{bc}{1+bc+b},
\]
于是
\[
\begin{split}
&\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ca+c+1}\\
=&\dfrac{1}{b+1+bc}+\dfrac{b}{bc+b+1}+\dfrac{bc}{1+bc+b}\\
=&\dfrac{1+b+bc}{bc+b+1}\\
=&1.
\end{split}
\]
3
硬算
\[
\begin{split}
&\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ca+c+1}\\
=&\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+bca}+\dfrac{c}{ca+c+cab}\\
=&\dfrac{1}{b+1+bc}+\dfrac{1}{c+1+ca}+\dfrac{1}{a+1+ab}\\
=&\frac{c+1+ca+b+1+bc}{(b+1+bc)(c+1+ca)}+\frac{1}{a+1+ab}\\
=&\frac{2+b+c+ac+bc}{bc+b+1+c+1+ac+bc^2+bc+c}+\frac{1}{a+1+ab}\\
=&\frac{2+b+c+ac+bc}{2bc+b+c+2+ac+bc^2+c}+\frac{1}{a+1+ab}\\
=&\frac{(2+b+c+ac+bc)(a+1+ab)+2bc+b+c+2+ac+bc^2+c}{(2bc+b+c+2+ac+bc^2+c)(a+1+ab)}\\
=&\frac{2a+2+2ab+ab+b+ab^2+ac+c+1+a^2c+ac+a+1+bc+b+2bc+b+c+2+ac+bc^2+c}{2+2bc+2b+ab+b+ab^2+ac+c+1+2a+2+2ab+a^2c+ac+a+c+bc^2+bc+ac+c+1}\\
=&\frac{3a+6+3ab+3b+ab^2+3ac+3c+a^2c+3bc+bc^2}{6+3bc+3b+3ab+ab^2+3ac+3c+3a+a^2c+bc^2}\\
=&1.
\end{split}
\]
4
第二项是第一项的b倍,第三项是第二项的c倍,所以原式=(1+b+bc)*第一项,简单化减一下就是1