Answer

问题及解答

写出函数 $f(x)=x-1$, $x\in[0,\pi]$ 的正弦级数.

Posted by haifeng on 2024-01-01 18:55:51 last update 2024-01-01 18:56:13 | Edit | Answers (1)

写出函数 $f(x)=x-1$, $x\in[0,\pi]$ 的正弦级数.

 

[Hint] 首先将其扩展定义到 $[-\pi,\pi]$, 使其为 $[-\pi,0)\cup(0,\pi]$ 上的奇函数.

1

Posted by haifeng on 2024-01-01 19:40:02

\[
f(x)=\begin{cases}
x-1, & 0\leqslant x\leqslant\pi,\\
x+1, & -\pi\leqslant x < 0.
\end{cases}
\]

则 $f$ 是 $[-\pi,\pi]$ (除开原点) 上的奇函数.  因此其 Fourier 级数为正弦级数.

\[
\begin{split}
b_n&=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nx\mathrm{d}x=\frac{2}{\pi}\int_{0}^{\pi}f(x)\sin nx\mathrm{d}x\\
&=\frac{2}{\pi}\int_{0}^{\pi}(x-1)\sin nx\mathrm{d}x=\frac{2}{\pi}\int_{0}^{\pi}(x-1)\mathrm{d}(\frac{-1}{n}\cos nx)\\
&=\frac{2}{\pi}\biggl[\frac{(1-x)}{n}\cos nx\biggr|_{0}^{\pi}-\int_{0}^{\pi}\frac{-1}{n}\cos nx\mathrm{d}x\biggr]\\
&=\frac{2}{\pi}\biggl[\Bigl(\frac{1-\pi}{n}(-1)^n-\frac{1}{n}\Bigr)+\frac{1}{n^2}\sin nx\biggr|_{0}^{\pi}\biggr]\\
&=\frac{2}{n\pi}\bigl[(-1)^n (1-\pi)-1\bigr]\\
\end{split}
\]

\[
b_n=\begin{cases}
-\frac{1}{k}, & n=2k,\\
\frac{2(\pi-2)}{(2k-1)\pi}, & n=2k-1.
\end{cases}
\]

或这样计算

\[
\begin{split}
b_n&=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nx\mathrm{d}x=\frac{2}{\pi}\int_{0}^{\pi}f(x)\sin nx\mathrm{d}x\\
&=\frac{2}{\pi}\int_{0}^{\pi}(x-1)\sin nx\mathrm{d}x\\
&=\frac{2}{\pi}\int_{0}^{\pi}x\sin nx\mathrm{d}x-\frac{2}{\pi}\int_{0}^{\pi}\sin nx\mathrm{d}x\\
&=\frac{2}{\pi}\int_{0}^{\pi}x\mathrm{d}(\frac{-1}{n}\cos nx)+\frac{2}{\pi}(\frac{1}{n}\cos nx)\biggr|_{0}^{\pi}\\
&=\frac{2}{\pi}\biggl[\frac{-1}{n}x\cos nx\biggr|_{0}^{\pi}+\int_{0}^{\pi}\frac{1}{n}\cos nx\mathrm{d}x\biggr]+\frac{2}{n\pi}((-1)^n-1)\\
&=\frac{2}{\pi}\biggl[\frac{-1}{n}\pi\cdot(-1)^n+\frac{1}{n^2}\sin nx\biggr|_{0}^{\pi}\biggr]+\frac{2}{n\pi}((-1)^n-1)\\
&=\frac{2}{\pi}\frac{-1}{n}\pi\cdot(-1)^n+0+\frac{2}{n\pi}((-1)^n-1)\\
&=\frac{2}{n\pi}\Bigl[(1-\pi)(-1)^n-1\Bigr].
\end{split}
\]

因此, $f(x)$ 的正弦级数为

\[
f(x)\sim\sum_{n=1}^{\infty}b_n\sin nx=\sum_{n=1}^{\infty}\frac{2}{n\pi}\bigl[(-1)^n (1-\pi)-1\bigr]\sin nx\ .
\]