求下列线性方程组的通解.
求下列线性方程组的通解
\[
\begin{cases}
2x_1+3x_2-x_3+x_4=1,\\
8x_1+12x_2-9x_3+8x_4=3,\\
4x_1+6x_2+3x_3-2x_4=3,\\
2x_1+3x_2+9x_3-7x_4=3.
\end{cases}
\]
题目来源于[1]
[1] 李炯生、查建国 编著 《线性代数》 P.192 例2.
求下列线性方程组的通解
\[
\begin{cases}
2x_1+3x_2-x_3+x_4=1,\\
8x_1+12x_2-9x_3+8x_4=3,\\
4x_1+6x_2+3x_3-2x_4=3,\\
2x_1+3x_2+9x_3-7x_4=3.
\end{cases}
\]
题目来源于[1]
[1] 李炯生、查建国 编著 《线性代数》 P.192 例2.
1
>> A=[2,3,-1,1;8,12,-9,8;4,6,3,-2;2,3,9,-7]
input> [2,3,-1,1;8,12,-9,8;4,6,3,-2;2,3,9,-7]
--------------------
2 3 -1 1
8 12 -9 8
4 6 3 -2
2 3 9 -7
--------------------
>> b=[1;3;3;3]
input> [1;3;3;3]
--------------------
1
3
3
3
--------------------
>> solve(A*x==b,hint)
The software Sowya has been registered.
>> 2 3 -1 1 1
8 12 -9 8 3
4 6 3 -2 3
2 3 9 -7 3
r1*1|2 ==>
1 3|2 -1|2 1|2 1|2
8 12 -9 8 3
4 6 3 -2 3
2 3 9 -7 3
------------
r2+r1*(-8) ==>
1 3|2 -1|2 1|2 1|2
0 0 -5 4 -1
4 6 3 -2 3
2 3 9 -7 3
------------
r3+r1*(-4) ==>
1 3|2 -1|2 1|2 1|2
0 0 -5 4 -1
0 0 5 -4 1
2 3 9 -7 3
------------
r4+r1*(-2) ==>
1 3|2 -1|2 1|2 1|2
0 0 -5 4 -1
0 0 5 -4 1
0 0 10 -8 2
------------
r2*(-1|5) ==>
1 3|2 -1|2 1|2 1|2
0 0 1 -4|5 1|5
0 0 5 -4 1
0 0 10 -8 2
------------
r1+r2*1|2 ==>
1 3|2 0 1|10 3|5
0 0 1 -4|5 1|5
0 0 5 -4 1
0 0 10 -8 2
------------
r3+r2*(-5) ==>
1 3|2 0 1|10 3|5
0 0 1 -4|5 1|5
0 0 0 0 0
0 0 10 -8 2
------------
r4+r2*(-10) ==>
1 3|2 0 1|10 3|5
0 0 1 -4|5 1|5
0 0 0 0 0
0 0 0 0 0
------------
The linearly independent column vectors are:
c1,c1,
The solution is:
x= E_0 + C_1*E_1 + C_2*E_2
where E_0 is the special solution and the others form the base of the solution:
---------------
E_0 E_1 E_2
------------------------
3|5 -3|2 -1|10
0 1 0
1|5 0 4|5
0 0 1
------------------------
>>