求解下列一元二次方程
求一元二次方程
(1) $112y^2+16y-7.68=0$
(2) $112x^2+16x-7=0$
(3) $x^2-14x-232=0$
(4) $5x^2+2x-1=0$
(5) $x^2-2x+\frac{9}{4}=0$
(6) $x^2-\frac{\sqrt{2}}{2}x+\frac{1}{8}=0$
(7) $x^2+2x+\frac{1}{2}=0$
求一元二次方程
(1) $112y^2+16y-7.68=0$
(2) $112x^2+16x-7=0$
(3) $x^2-14x-232=0$
(4) $5x^2+2x-1=0$
(5) $x^2-2x+\frac{9}{4}=0$
(6) $x^2-\frac{\sqrt{2}}{2}x+\frac{1}{8}=0$
(7) $x^2+2x+\frac{1}{2}=0$
1
解. 原方程可化为 $16\cdot(7y^2+y-0.48)=0$, 从而与 $7y^2+y-0.48=0$ 同解.
\[
\begin{split}
&7y^2+y-0.48=0\\
\Rightarrow\ &7y^2+y-\frac{12}{25}=0\\
\Rightarrow\ &7\cdot 25y^2+25y-12=0\\
\Rightarrow\ &7\cdot(5y)^2+5\cdot(5y)-12=0
\end{split}
\]
令 $x=5y$, 得
\[
7x^2+5x-12=0
\]
利用十字相乘法, 将左边的二次多项式因式分解,
\[
(x+\frac{12}{7})(7x-7)=0
\]
这推出 $x_1=-\frac{12}{7}$, $x_2=1$. 于是,
\[
\begin{aligned}
y_1=\frac{1}{5}x_1=\frac{1}{5}\cdot(-\frac{12}{7})=-\frac{12}{35}\\
y_2=\frac{1}{5}x_2=\frac{1}{5}\cdot 1=\frac{1}{5}.
\end{aligned}
\]
使用 Sowya 进行验证
>> solve(112*x^2+16x-7.68==0)
这是一个一元二次方程.
112x^2+16x^1-192|25 == 0
solution>
x1 = 1|5
x2 = -12|35
------------------------
2
(2)
112x^2+16x^1-7 == 0
>> solve(112*x^2+16x-7==0)
这是一个一元二次方程.
112x^2+16x^1-7 == 0
solution>
x1 = (-16+8*sqrt(53))|224
x2 = (-16-8*sqrt(53))|224
------------------------
3
(3) $x^2-14x-232=0$
>> solve(x^2-14x-232==0)
这是一个一元二次方程.
x^2-14x^1-232 == 0
solution>
x1 = (14+2*sqrt(281))|2
x2 = (14-2*sqrt(281))|2
------------------------
4
(4) $5x^2+2x-1=0$
>> solve(5x^2+2x-1==0)
这是一个一元二次方程.
5x^2+2x^1-1 == 0
solution>
x1 = -1|5-sqrt(6)|5
x2 = -1|5+sqrt(6)|5
------------------------
(7) $x^2+2x+\frac{1}{2}=0$
>> solve(x^2+2x+1/2==0)
这是一个一元二次方程.
x^2+2x^1+1|2 == 0
solution>
x1 = -1+sqrt(2)/2
x2 = -1-sqrt(2)/2
------------------------