证明: $\log(n!)\geqslant\frac{n}{2}\log\frac{n}{2}$.
证明: $\log(n!)\geqslant\frac{n}{2}\log\frac{n}{2}$.
证明: $\log(n!)\geqslant\frac{n}{2}\log\frac{n}{2}$.
1
证明:
\[
\begin{split}
\log(n!)&=\log(n(n-1)(n-2)\cdots 3\cdot 2\cdot 1)\\
&=\log n+\log(n-1)+\log(n-2)+\cdots+\log 3+\log 2+\log 1\\
&\geqslant\log n+\log(n-1)+\log(n-2)+\cdots+\log([\frac{n}{2}])\\
&\geqslant\frac{n}{2}\log\frac{n}{2}
\end{split}
\]