根据变换 $w=\frac{1}{z}-\frac{1}{x}=\frac{1}{z}-\frac{1}{u}$.
\[
\frac{\partial w}{\partial u}=-\frac{1}{z^2}\cdot\frac{\partial z}{\partial u}+\frac{1}{u^2}.
\]
由 $v=\frac{1}{y}-\frac{1}{x}$ 及 $u=x$ 可以反解出 $x=u$, $y=\frac{u}{1+uv}$. 于是
\[
z(x,y)=z(u,\frac{u}{1+uv})
\]
因此
\[
\begin{split}
\frac{\partial z}{\partial u}&=\frac{\partial z}{\partial x}\cdot 1+\frac{\partial z}{\partial y}\cdot(\frac{u}{1+uv})'_u\\
&=\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}\cdot\frac{1\cdot(1+uv)-u\cdot v}{(1+uv)^2}\\
&=\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}\cdot\frac{1}{(1+uv)^2}
\end{split}
\]
因此,
\[
\begin{split}
\frac{\partial w}{\partial u}&=-\frac{1}{z^2}\cdot\biggl(\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}\cdot\frac{1}{(1+uv)^2}\biggr)+\frac{1}{u^2}\\
&=\frac{1}{u^2}-\frac{z'_x+\frac{1}{(1+uv)^2}z'_y}{x^2 z'_x+y^2 z'_y}\\
&=\frac{x^2 z'_x+y^2 z'_y-u^2 z'_x-\frac{u^2}{(1+uv)^2}z'_y}{u^2(x^2 z'_x+y^2 z'_y)}\\
&=\frac{(y^2-\frac{u^2}{(1+uv)^2}) z'_y}{u^2(x^2 z'_x+y^2 z'_y)}\\
&=0.
\end{split}
\]