Answer

问题及解答

求一元三次方程的根.

Posted by haifeng on 2023-04-01 20:16:04 last update 2023-04-20 22:10:35 | Edit | Answers (6)

求下列一元三次方程的根.

(1)    $x^3-x^2-x-2=0$;

 

(2)    $x^3-3x^2+2x^1-2=0$;

 

(3)    $x^3+1=0$;

 

(4)    $x^3-15x-126=0$

 

(5)    $x^3+x^2+x+1=0$

 

(6)    $x^3-6x+2=0$

1

Posted by haifeng on 2023-04-20 08:40:49

(1)

>> solve(x^3-x^2-x-2==0)

It is a univariate cubic equation.

  x^3-1x^2-1x^1-2 == 0

Answer:
        Let y=x-1/3

We get equation of y: y^3+py+q==0
where

        p=b-a^2/3,    q=c-ab/3+2a^3/27,

and a,b,c,d are coefficients of the equation ax^3+bx^2+cx+d==0

By computation,
        p = -4|3
        q = -65|27
Now the equation is:

        y^3-4|3y-65|27 == 0

        Delta = (q/2)^2+(p/3)^3 = 49|36

        sqrt(Delta) = sqrt((q/2)^2+(p/3)^3) = 7|6

        q/2 = -65|54
        -q/2 + sqrt(Delta) = 64|27
        -q/2 - sqrt(Delta) = 1|27
        u = 4|3
        v = 1|3

solution>
        x1 = 2
        x2 = 4|3w+1|3w^2+1|3 = -1|2+1|2*sqrt(3)*i
        x3 = 4|3w^2+1|3w+1|3 = -1|2-1|2*sqrt(3)*i

Where w is
        -1/2+i*sqrt(3)/2


------------------------

2

Posted by haifeng on 2023-04-20 08:41:40

(2)

>> solve(x^3-3x^2+2x-2==0)

It is a univariate cubic equation.

  x^3-3x^2+2x^1-2 == 0

Answer:
        Let y=x-3/3

We get equation of y: y^3+py+q==0
where

        p=b-a^2/3,    q=c-ab/3+2a^3/27,

and a,b,c,d are coefficients of the equation ax^3+bx^2+cx+d==0

By computation,
        p = -1
        q = -2
Now the equation is:

        y^3-1y-2 == 0

        Delta = (q/2)^2+(p/3)^3 = 26|27

        sqrt(Delta) = sqrt((q/2)^2+(p/3)^3) = sqrt(26)|3*sqrt(3)

        q/2 = -1
        -q/2 + sqrt(Delta) = (sqrt(26)-(-3*sqrt(3)))|3*sqrt(3)
        -q/2 - sqrt(Delta) = -(sqrt(26)-3*sqrt(3))|3*sqrt(3)
        u = sqrtn(1+sqrt(26)|3*sqrt(3), 3)
        v = sqrtn(1-sqrt(26)|3*sqrt(3), 3)

solution>
        x1 = sqrtn(1+sqrt(26)|3*sqrt(3), 3)+sqrtn(1-sqrt(26)|3*sqrt(3), 3)+1
        x2 = sqrtn(1+sqrt(26)|3*sqrt(3), 3)w+sqrtn(1-sqrt(26)|3*sqrt(3), 3)w^2+1
        x3 = sqrtn(1+sqrt(26)|3*sqrt(3), 3)w^2+sqrtn(1-sqrt(26)|3*sqrt(3), 3)w+1

Where w is
        -1/2+i*sqrt(3)/2


------------------------

3

Posted by haifeng on 2023-04-20 11:25:42

>> solve(x^3+1==0)

It is a univariate cubic equation.

  x^3+1 == 0

Answer:
We get equation of y: y^3+py+q==0
where

        p=b-a^2/3,    q=c-ab/3+2a^3/27,

and a,b,c,d are coefficients of the equation ax^3+bx^2+cx+d==0

By computation,
        p = 0
        q = 1
Now the equation is:

        y^3+0y+1 == 0

        Delta = (q/2)^2+(p/3)^3 = 1|4

        sqrt(Delta) = sqrt((q/2)^2+(p/3)^3) = 1|2

        q/2 = 1|2
        -q/2 + sqrt(Delta) = 0
        -q/2 - sqrt(Delta) = -1
        u = 0
        v = -1

solution>
        x1 = -1
        x2 = 0w-1w^2-0 = 1|2+1|2*sqrt(3)*i
        x3 = 0w^2-1w-0 = 1|2-1|2*sqrt(3)*i

Where w is
        -1/2+i*sqrt(3)/2


------------------------

4

Posted by haifeng on 2023-04-20 20:42:13

(4)

>> solve(x^3-15x-126==0)

It is a univariate cubic equation.

  x^3-15x^1-126 == 0

Answer:
        p = -15
        q = -126

        Delta = (q/2)^2+(p/3)^3 = 3844

        sqrt(Delta) = sqrt((q/2)^2+(p/3)^3) = 62

        q/2 = -63
        -q/2 + sqrt(Delta) = 125
        -q/2 - sqrt(Delta) = 1
        u = 5
        v = 1

solution>
        x1 = 6
        x2 = 5w+1w^2-0 = -3+2*sqrt(3)*i
        x3 = 5w^2+1w-0 = -3-2*sqrt(3)*i

Where w is
        -1/2+i*sqrt(3)/2


------------------------

5

Posted by haifeng on 2023-04-20 20:46:02

>> solve(x^3+x^2+x+1==0)

It is a univariate cubic equation.

  x^3+x^2+x^1+1 == 0

Answer:
Let y=x+1/3

We get equation of y: y^3+py+q==0
where

        p=b-a^2/3,    q=c-ab/3+2a^3/27,

and a,b,c,d are coefficients of the equation ax^3+bx^2+cx+d==0

By computation,
        p = 2|3
        q = 20|27
Now the equation is:

        y^3+2|3y+20|27 == 0

        Delta = (q/2)^2+(p/3)^3 = 4|27

        sqrt(Delta) = sqrt((q/2)^2+(p/3)^3) = 2|3*sqrt(3)

        q/2 = 10|27
        -q/2 + sqrt(Delta) = (54-10*3*sqrt(3))|27*3*sqrt(3)
        -q/2 - sqrt(Delta) = -(54+10*3*sqrt(3))|27*3*sqrt(3)
        u = sqrtn(-10|27+2|3*sqrt(3), 3)
        v = sqrtn(-10|27-2|3*sqrt(3), 3)

solution>
        x1 = sqrtn(-10|27+2|3*sqrt(3), 3)+sqrtn(-10|27-2|3*sqrt(3), 3)-1|3
        x2 = sqrtn(-10|27+2|3*sqrt(3), 3)w+sqrtn(-10|27-2|3*sqrt(3), 3)w^2-1|3
        x3 = sqrtn(-10|27+2|3*sqrt(3), 3)w^2+sqrtn(-10|27-2|3*sqrt(3), 3)w-1|3

Where w is
        -1/2+i*sqrt(3)/2


------------------------

6

Posted by haifeng on 2023-04-20 22:10:58

(6)

>> solve(x^3-6x+2==0)

It is a univariate cubic equation.

  x^3-6x^1+2 == 0

Answer:
        p = -6
        q = 2

        Delta = (q/2)^2+(p/3)^3 = -7

        sqrt(Delta) = sqrt((q/2)^2+(p/3)^3) = sqrt(7)*i

        q/2 = 1
        -q/2 + sqrt(Delta) = (sqrt(7)*i-1)
        -q/2 - sqrt(Delta) = -(sqrt(7)*i+1)
        u = sqrtn(-1+sqrt(7)*i, 3)
        v = sqrtn(-1-sqrt(7)*i, 3)

solution>
        x1 = sqrtn(-1+sqrt(7)*i, 3)+sqrtn(-1-sqrt(7)*i, 3)-0
        x2 = sqrtn(-1+sqrt(7)*i, 3)w+sqrtn(-1-sqrt(7)*i, 3)w^2-0
        x3 = sqrtn(-1+sqrt(7)*i, 3)w^2+sqrtn(-1-sqrt(7)*i, 3)w-0

Where w is
        -1/2+i*sqrt(3)/2


------------------------