Answer

问题及解答

求 $f(x)$ 与 $g(x)$ 的最大公因式

Posted by haifeng on 2023-04-01 15:15:54 last update 2023-04-01 15:15:54 | Edit | Answers (2)

(1)    $f(x)=x^4+x^3-3x^2-4x-1$,    $g(x)=x^3+x^2-x-1$;

 

(2)    $f(x)=x^4-4x^3+1$,    $g(x)=x^3-3x^2+1$;

 

(3)    $f(x)=x^4-10x^2+1$,    $g(x)=x^4-4\sqrt{2}x^3+6x^2+4\sqrt{2}x+1$.

1

Posted by haifeng on 2023-04-01 15:22:02

(1)

>> Gcd(x^4+x^3-3x^2-4x-1,x^3+x^2-x-1)
in> Gcd(x^4+x^3-3x^2-4x-1,x^3+x^2-x-1)
-3|4x-3|4
------------------------

详细步骤可使用 Gcd2()函数.

in> Gcd2(x^4+x^3-3x^2-4x-1,x^3+x^2-x-1)
out> 
x^4+x^3-3x^2-4x^1-1 == (x^1)*(x^3+x^2-1x^1-1) + (-2x^2-3x^1-1)
 
x^3+x^2-1x^1-1 == (-1|2x^1+1|4)*(-2x^2-3x^1-1) + (-3|4x^1-3|4)
 
-2x^2-3x^1-1 == (8|3x^1+4|3)*(-3|4x^1-3|4)
 
 
-------------------------------------
f(x) = x^4+x^3-3x^2-4x^1-1
g(x) = x^3+x^2-1x^1-1
 
 The remainder polynomials are:
 
r(1) = -2x^2-3x^1-1
r(2) = -3|4x^1-3|4
 
-----u(x)*f(x)+v(x)*g(x)---------
-3|4x^1-3|4 == 
(1|2x^1-1|4)*f(x) + (-1|2x^2+1|4x^1+1)*g(x)
The greatest common divisor is:
-3|4x-3|4
------------------------

 

 

 

2

Posted by haifeng on 2023-04-01 15:27:32

(2)

>> Gcd(x^4-4x^3+1,x^3-3x^2+1)
in> Gcd(x^4-4x^3+1,x^3-3x^2+1)
-27|256
------------------------

 

>> Gcd2(x^4-4x^3+1,x^3-3x^2+1)
in> Gcd2(x^4-4x^3+1,x^3-3x^2+1)
out>
x^4-4x^3+1 == (x^1-1)*(x^3-3x^2+1) + (-3x^2-1x^1+2)

x^3-3x^2+1 == (-1|3x^1+10|9)*(-3x^2-1x^1+2) + (16|9x^1-11|9)

-3x^2-1x^1+2 == (-27|16x^1-441|256)*(16|9x^1-11|9) + (-27|256)

16|9x^1-11|9 == (-4096|243x^1+2816|243-0)*(-27|256)


-------------------------------------
f(x) = x^4-4x^3+1
g(x) = x^3-3x^2+1

 The remainder polynomials are:

r(1) = -3x^2-1x^1+2
r(2) = 16|9x^1-11|9
r(3) = -27|256

-----u(x)*f(x)+v(x)*g(x)---------
-27|256 ==
        (9|16x^2-333|256x^1-117|128)*f(x) + (-9|16x^3+477|256x^2+333|256x^1+207|256)*g(x)
The greatest common divisor is:
-27|256
------------------------